Downloaded 05/08/18 to 198.11.29.131. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM REVIEW © 2018 Society for Industrial and Applied Mathematics
Vol. 60, No. 2, pp. 315-355

Configuring Random Graph
Models with Fixed Degree Sequences*

Bailey K. Fosdick®
Daniel B. Larremore?
Joel Nishimura®
Johan Ugander¥

Abstract. Random graph null models have found widespread application in diverse research commu-
nities analyzing network datasets, including social, information, and economic networks, as
well as food webs, protein-protein interactions, and neuronal networks. The most popular
random graph null models, called configuration models, are defined as uniform distribu-
tions over a space of graphs with a fixed degree sequence. Commonly, properties of an
empirical network are compared to properties of an ensemble of graphs from a configura-
tion model in order to quantify whether empirical network properties are meaningful or
whether they are instead a common consequence of the particular degree sequence. In this
work we study the subtle but important decisions underlying the specification of a config-
uration model, and we investigate the role these choices play in graph sampling procedures
and a suite of applications. We place particular emphasis on the importance of specifying
the appropriate graph labeling—stub-labeled or vertex-labeled—under which to consider
a null model, a choice that closely connects the study of random graphs to the study of
random contingency tables. We show that the choice of graph labeling is inconsequential
for studies of simple graphs, but can have a significant impact on analyses of multigraphs
or graphs with self-loops. The importance of these choices is demonstrated through a
series of three in-depth vignettes, analyzing three different network datasets under many
different configuration models and observing substantial differences in study conclusions
under different models. We argue that in each case, only one of the possible configuration
models is appropriate. While our work focuses on undirected static networks, it aims to
guide the study of directed networks, dynamic networks, and all other network contexts
that are suitably studied through the lens of random graph null models.
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I. Introduction. A configuration model is a uniform distribution over graphs
with a specific degree sequence. For researchers studying network data, it is common
to employ a configuration model as a degree-preserving null model that holds fixed
the degree sequence of an empirical graph while randomizing all other structure. In
other domains, researchers study the properties of graph algorithms, dynamical mod-
els, or optimization routines on “realistic” graphs by sampling random graphs from a
configuration model with an empirically relevant degree sequence.

There is a tendency in the literatures of graph mining, machine learning, and
network science to think of and study one configuration model—the configuration
model—without specifying or reflecting upon the defining properties of the space of
graphs over which the uniform distribution is considered. As a consequence, mis-
understandings have developed within a number of domain sciences surrounding the
configuration model, at times because discussions refer to uniform distributions over
subtly but importantly different spaces of graphs. In this paper, we clarify the differ-
ences between eight commonly arising graph spaces and their corresponding uniform
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distributions, aiming to provide an orderly review of and guide to the diverse fields
of study where configuration models have found application.

In some circumstances, differences between particular graph spaces are asymp-
totically small in the limit of large and sparse graphs with restricted degree se-
quences. However, as we will demonstrate, not all differences between graph spaces
are asymptotically small, and perhaps more importantly, a great deal of modern
graph analysis is performed on graphs that are well short of fulfilling these asymp-
totic promises.

We begin by reviewing eight common graph spaces over which one might seek
a uniform distribution. These spaces can be organized according to the answers to
three binary questions, which we describe in section 1.5. We then provide a detailed
overview of the subtleties involved in uniformly sampling from these different spaces
in sections 2 and 3, primarily through correctly specified Markov chains, with brief
discussions of other related graph spaces, including connected, directed, and weighted
graphs.! After establishing formal sampling results we then turn to a series of three
vignettes in section 5 that illustrate the scientific importance of choosing the correct
graph space as a null model. In particular, we argue that the common default choice
of studying configuration models over stub-labeled graphs (where each half-edge is la-
beled) is an inappropriate choice for most analyses of nonsimple graphs. Importantly,
we demonstrate that this choice of null model leads to different conclusions than more
appropriate null models based on vertex-labeled graphs.

l.1. Basic Definitions. Recall the basic definition of a graph as an ordered pair
G = (V,E), consisting of a vertex set V and an edge set £ C V x V. The edge
set E is understood to be a simple set, but if F is a multiset (where a vertex pair
(u,v) can appear several times in E), then the graph is instead called a multigraph.
Depending on the context, a graph or multigraph may allow or disallow the presence
of self-loops (edges of the form (u,u), connecting a vertex to itself). A graph is also
often represented as a |V| x |V| adjacency matriz, such that the (i, j)th entry w;; is
equal to the number of edges between vertices ¢ and j. For undirected graphs, as
considered here, the adjacency matrix is symmetric.

The choices to allow or disallow self-loops or multiedges are the first two to be
made in specifying a configuration model’s graph space. In order to be precise about
the properties of each graph space, we briefly review four definitions. First, a simple
graph is a graph without self-loops or multiedges. Second, there is no established
name in the literature for a graph allowing self-loops but without multiedges, so we
refer to such a graph plainly as a loopy graph. In the literature, multigraphs are
sometimes taken to have self-loops and sometimes not; we adopt the more conven-
tional name multigraph to refer specifically to multigraphs without self-loops, and use
loopy multigraph to refer to a multigraph that allows self-loops (also sometimes called
a pseudograph). See Figure 1(a) for a diagram illustrating the basic relationships
between these graph spaces.

1.2. Vertex- and Stub-Labeled Graph Spaces. A graph G = (V, E) consists of
two sets: a vertex set V and an edge set F. These sets can be unlabeled or labeled,
motivating the following definitions that will be used throughout the paper.

DEFINITION 1.1 (vertex-labeled graph). A vertex-labeled graph is a graph in
which each vertex has a distinct label.

ISee also [27], whose publication followed this work’s submission.
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Fig. | Graph spaces. (a) Nested and overlapping graph spaces, defined by allowing or prohibit-
ing self-loops or multiedges. (b) Two instances of stub matching resulting in the same
vertez-labeled graph but different stub-labeled graphs. (c)—(e) For the degree sequence
{ki} ={2,2,1,1}, the (c) set of graph isomorphism classes, (d) set of vertez-labeled graphs,
and (e) set of stub-labeled graphs, (where the stub labels are delineated by the locations where
they protrude from a vertezx). For the two simple graphs in panel (d), they are both “stub-
isomorphic” to the same number of stub-labeled graphs in panel (e), in particular, to exactly
1, ki! = 4 graphs. However, the sizes of the stub-isomorphism classes differ for graphs with
self-loops or multiedges, illustrating why vertex- and stub-labeled spaces may not be treated
as equivalent. Note that both graphs shown in panel (b) fall in the same row of panel (e).

For vertex-labeled graphs, there is a bijection between graphs and adjacency
matrices, i.e., each vertex-labeled graph can be uniquely identified by its adjacency
matrix, and vice versa. However, in addition to vertices, the two endpoints of each
edge (where they connect to vertices), can also be labeled separately. The case when
these half-edges or “stubs” are labeled motivates the following definition.

DEFINITION 1.2 (stub-labeled graph). A stub-labeled graph is a graph in which
each half-edge (stub) has a distinct label, and thus each edge has a pair of distinct
labels.

Note that a stub-labeled graph also has implicitly labeled vertices, since each
vertex is distinctly labeled by the set of labeled stubs attached to it. However, in
contrast with vertex-labeled graphs, there is no bijection between stub-labeled graphs
and adjacency matrices, i.e., multiple stub-labeled graphs can correspond to the same
adjacency matrix. An wunlabeled graph is a graph in which neither edges nor ver-
tices are labeled. An unlabeled graph can be thought of as an isomorphism class
in a space of labeled graphs, where there exists a set of labeled graphs that all cor-
respond to the same unlabeled graph. Similarly, there exists a set of stub-labeled
graphs which correspond to the same vertex-labeled graph, motivating the following
definition.

DEFINITION 1.3 (stub-isormorphism). A stub-isomorphism equivalence class is
the set of all stub-labeled graphs which, upon removal of stub labels, results in the
same vertex-labeled graph. Equivalently, a stub-isomorphism class is the set of all
stub-labeled graphs which are represented by the same adjacency matrixz. Two graphs
in the same stub-isomorphism class are said to be stub-isomorphic.

For the space of simple graphs with a given degree sequence {k;};cv, where k;
is the degree of vertex i—and only for simple graphs, as we shall see—the number

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/08/18 to 198.11.29.131. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CONFIGURING RANDOM GRAPH MODELS WITH FIXED DEGREE SEQUENCES 319

of stub-isomorphic graphs corresponding to a given vertex-labeled graph is a con-
stant that depends only on the degree sequence (which is fixed). As a result, each
vertex-labeled graph appears the same number of times in the space of stub-labeled
graphs, and hence the uniform distributions over both spaces are equivalent in most
practical contexts where analyses ignore explicit stub labels. On the other hand,
for nonsimple graphs with loops and/or multiedges, this is not the case, and the
choice of labeling can radically change the space of graphs and, thereby, any result-
ing/downstream/derivative analysis.

We visualize the differently labeled spaces for an example degree sequence, {2,2,
1,1}, in Figure 1(c)—(e). In the vertex-labeled space, half the graphs (3 of 6) have
self-loops and only a third of the graphs (2 of 6) are simple; in the stub-labeled
space, the majority of the graphs (8 of 15) are simple. As we will show in sec-
tion 4, self-loops and multiedges are always more common in vertex-labeled graphs,
and for many degree sequences they are vastly more common. Uniform distributions
over these differently labeled spaces can therefore produce wildly different answers
to straightforward questions. For example, if one asks, “What fraction of graphs
with the given degree sequence form a single connected component?” for this de-
gree sequence, the answer varies considerably—1/4, 2/6, or 8/15—depending on the
space.

1.3. A Brief History of Stubs. Stub-labeled graphs arise naturally from a rela-
tively simple stub matching process. The first step assigns a specific number of stubs
to each vertex, ensuring that each vertex will have exactly the desired number of
edges as specified by the degree sequence. To guarantee vertex i will have the correct
degree k;, we force one endpoint of each of k; edges to be vertex i, while the other
endpoint is left floating, unassigned. In this way, each vertex 7 has k; half-edges or
stubs. Joining two such stubs produces an edge. Note that by construction, every
vertex has the correct number of edges, so repeatedly joining pairs of stubs results in
a graph with the correct degree sequence, shown in Figure 1(b).

More precisely, the stub matching process takes a specified degree sequence {k; };cv
and generates a graph using the following randomized process. Each vertex i is as-
signed exactly k; stubs, and pairs of stubs are chosen uniformly at random and con-
nected until there are no remaining unpaired stubs. This process, which only requires
that the total number of stubs be even, creates a loopy multigraph with exactly
the specified degree sequence. Due to the fact that stubs are chosen uniformly at
random, this stub matching procedure (also called the pairing model [17]) samples
uniformly from the space of stub-labeled loopy multigraphs, as discussed further in
section 3.1.

Stub matching was first introduced by Bollobés [19] as a method for enumerating
the number of vertex-labeled simple graphs with certain degree sequences [11, 12].
Although stub matching draws from the space of stub-labeled loopy multigraphs,
Bollobas assumed that the degrees of all vertices did not grow too quickly relative
to the size of the graph, and then showed that the number of stub-labeled graphs
with self-loops and/or multiedges was asymptotically small relative to the number of
stub-labeled simple graphs. By the fact that every vertex-labeled simple graph is stub-
isomorphic to exactly ], k;! stub-labeled graphs (see section 4 and Figure 1(d)—(e)),
Bollobds provided an asymptotically tight estimate (for large graphs) of the number
of vertex-labeled simple graphs. Of note, Bollobas called each stub-labeled graph a
configuration, and this is the origin of the name configuration model for these uniform
distributions.
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Bollobas’ analysis contains two subtleties that are major sources of confusion
about configuration models. First, as noted above, every vertex-labeled simple graph
is isomorphic to a fixed number of stub-labeled simple graphs (e.g., this number is
four for the degree sequence {2,2,1,1} in Figure 1), but the same cannot be said
for graphs with self-loops or multiedges. Second, many analyses assume conditions
on the degree sequence (e.g., adequately bounded growth) under which the number
of nonsimple graphs is asymptotically small relative to the number of simple graphs,
but for any finite degree sequence the number of nonsimple graphs can represent a
substantial fraction of the graph space. The mathematical literature is almost always
precise regarding these two points. However, as configuration model random graphs
have spread into diverse fields following waves of interest in graph analysis and network
science methods, these points have often caused confusion in the broader literature,
as we discuss below. We hope that this work will help mark a turning point in that
confusion. In the remainder of this introduction, we briefly survey the history of
different applications of fixed-degree-sequence random graph null models, and then
summarize the concrete decisions that underlie the choices of different configuration
model null models.

1.4. A Brief History of Applications of Random Graphs with Fixed Degree
Sequence. The practice of comparing an observation to a randomized null model
has its origins in R. A. Fisher’s foundational work on randomization for hypothesis
testing [53]. Random graph null models extend this practice to the space of graphs.
They allow comparisons between properties of real-world graphs and properties of
graphs drawn at random from a graph space, ultimately allowing us to quantify what
is surprising and what is expected. However, as with any hypothesis test, the choice
of randomized null model directly affects the conclusions that can be drawn from
the test. For this reason, the classic but overly simplistic Erd6s—Rényi random graph
model, in which each possible edge exists independently with probability p, or its near
equivalent, and in which a fixed number of edges are placed between random pairs
of vertices, are usually avoided. Compared to an Erdés—Rényi null model, real-world
networks often appear rich in structure by comparison. Instead, due to the fact that
many key properties of networks are strongly constrained by the distribution of vertex
degrees [109, 18, 24, 34, 81, 118], it is far more common and appropriate to use as
a null model a space of graphs in which the degrees of all the vertices are fixed, but
where the edges are otherwise placed between vertices uniformly at random. This
family of degree-preserving random graph models, which we call configuration models
throughout this paper, have at different times been discovered independently and
used as null models in sociology, ecology, systems biology, combinatorics, statistics,
psychology, and network science, spanning over 80 years of applied research. We detail
some of this rich history here.

Null Models in Sociology: Chance Sociograms, 1930s. In 1934 Jacob Moreno
initiated the quantitative study of social networks through his influential book Who
Shall Survive? [103]. Soon thereafter, in 1938, Moreno and Jennings published Statis-
tics of Social Configurations, which introduced statistics to social network analysis
through the use of so-called chance sociograms, i.e., randomly sampled adjacency
matrices with fixed out-degrees (i.e., one fixed margin) [104]. Moreno and Jennings
argued that in order to establish the statistical significance of an analysis, one should
compare an observed social network with a network constructed through a chance
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experiment.? Moreno and Jennings demonstrated their procedure by studying a pop-
ulation of 26 children at the New York State Training School for Girls in Hudson,
NY. The children were surveyed for their three preferred dining partners, creating
a directed network of dining partner preferences. This observed network was com-
pared to a small set of seven manually randomized directed graphs restricted such
that each vertex had three outgoing edges and no multiedges (as in the observed
network). Moreno and Jennings contrasted their empirical graph with the small en-
semble of graphs drawn from their null model, and concluded that some observed
network features were statistically significant while others were not. While our focus
in this work is on undirected (as opposed to directed) configuration models, directed
configuration models are discussed briefly in section 3.2. Another significant early use
of a random graph null model in sociology is contained in Davis and Leinhardt’s work
testing Homans’ structural theory of social hierarchy from the 1950s [68]. The study
tested the theory by studying social network subgraph frequencies [38], contrasting
empirical frequencies with those of an Erdés—Rényi random graph null model.

Null Models in Ecology: Species Co-occurrence Patterns, 1970s. A configura-
tion model arose independently in ecology when, in 1975, Jared Diamond published an
analysis of bird species co-occurrence on the islands of the Bismarck Archipelago and
argued that, based on the patterns of species presence and absence observed across
the islands, the presence of some species precluded the presence of others [45]. In
1979, Connor and Simberloff argued that the patterns themselves were not sufficient
evidence for such conclusions; they argued that a null model of randomly assigned
species to islands, in which the number of species per island and number of islands
per species are exactly preserved, should be used to assess the possibility that the
empirical patterns are the result of random chance [35]. In other words, Connor and
Simberloff argued that observed patterns should be compared against a null model
and, in particular, against a degree-preserving configuration model, based on the ob-
served presence/absence matrix. This methodological debate has continued for over
40 years regarding both the correct null model and appropriate test statistics for quan-
tifying patterns of species presence/absence patterns (see [61] for a partial review).

Many contributions to the ongoing ecological discussion have been made in the
years since. In 1987, Wilson contributed a fixed marginal null model, which required
that any matrix in the ensemble have the same number of sites per species and species
per site as the observed data, corresponding directly to an undirected bipartite con-
figuration model with fixed degrees [138].> Wilson’s 1987 fixed marginal null model
assembled the network via a stub matching procedure. He found that the stub match-
ing was often unable to finish without creating a double edge, and so he found better
success rates by using a heuristic nearly equivalent to the Havel-Hakimi algorithm
[66, 65] (though Wilson states that he was unable to find any proof in the litera-

2Moreno and Jennings, in fact, frequently used the word “configurations” to describe their chance
sociograms, several decades before Bollobas’ work: “Study of the findings of sociometric tests showed
that the resulting configurations, in order to be compared with one another, were in need of some
common reference base from which to measure the deviations. It appeared that the most logical
ground for establishing such a reference could be secured by ascertaining the characteristics of typical
configurations produced by chance balloting for a similar size population with a like number of
choices.” That said, the term “configuration model” is generally accepted to stem from Bollobas’s
usage of the word.

3 A bipartite network is a network where edges only occur between two distinct sets of vertices. For
example, a plant-pollinator network contains both plants and insects as vertices and edges connecting
pollinating insects to plants, but no edges between pairs of insects or pairs of plants.
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ture of his method). This debate illustrates the disconnect between the ecology and
mathematics literatures at the time.

Null Models for Tables: Matrix Counting & Contingency Tables, 1970s-1990s.
Contingency tables are rectangular matrices with integer entries, representing a tab-
ulation of entities along two dimensions, e.g., the number of college graduates by
major and institution. These tables, when viewed as adjacency matrices, characterize
an undirected bipartite multigraph. There are straightforward analogous connections
between the binary tables in ecology and the more general (nonbinary) contingency
tables studied in statistics [31]. As in the network literature, contingency table analy-
ses often involve asking whether table properties are interesting compared to random
tables with the same row and column totals (the same marginal totals). An initial
focus of this literature was on enumerating the matrices with fixed marginals [56, 44].
Compared to presence/absence matrices, where the entries are restricted to be either
0 or 1, analyzing adjacency matrices corresponding to contingency tables is much
more straightforward. Many direct sampling procedures have been proposed [113], as
well as procedures which ezactly characterize the null distribution of tables with fixed
marginals and do not rely on sampling (see [134, 1] for reviews of these methods).

Null Models in Systems Biology: Network Motifs, 2000s. As the large-scale
study of both genetic regulatory networks and neuronal networks emerged in the
early 2000s, lengthy debates were held in the literature regarding the choices of (and
technical means for sampling from) null models. The debate on genetic regulatory
networks began with a study by Milo et al. that found specific network motifs (regu-
latory patterns) that were more frequent than expected in a configuration model null
model [100, 70]. Soon after that work was published, King issued a commentary that
called attention to choices in the design of the random graph sampling algorithms
in these works, noting that they did not sample uniformly from any graph spaces of
reasonable interest [74]. A series of responses by the original authors led to corrected
algorithms for sampling from the stub-labeled spaces of random graphs with fixed
degree sequences [99, 69]. It is worth mentioning that other work on configuration
model null models of genetic regulatory networks, using correct sampling techniques,
was also being conducted in parallel to the above controversy [90].

A parallel debate in the literature on neuronal networks noted that the study of
network motifs in neuronal networks [100, 98] involving comparisons between observed
structures and configuration model random graphs was flawed at a deeper conceptual
level, as it overlooked the role of spatial structure in brains [5]. A series of published
exchanges followed [97, 6], leading to the study of specific spatial network null models
for studying brain networks [123]. A similar adaptation, known as distance modularity
[87], has recently been introduced to the broader literature on network community
detection.

Other applications of configuration model random graph null models include stud-
ies of patterns in the structure of the world wide web [109], the Internet [91], food
webs [127], academic career trajectories [89], the dynamics of social contagion [28],
disease propagation [124], opinion dynamics [137], and economic network effects [129)].
As we discuss at length in section 5.3, these null models also underlie all community
detection methods based on modularity maximization [108]. Across these diverse ap-
plications as well as the earlier literature, different applications have tended to employ
slightly different null models, and these variations make it very difficult to compare
and contrast findings. In the next subsection we introduce a sequence of concrete
choices that formalize the decisions underlying the choice of a graph space, and hence
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a configuration model. Consequences of these decisions are discussed at length in
section 5 through a series of application vignettes.

1.5. Choosing a Graph Space. It is often impossible to unambiguously identify
an empirical graph as coming from a particular space of graphs; additional knowledge
about the system that produced the graph is almost always required. For example, as
shown in Figure 1, simple graphs are a subset of the other graph spaces, and thus a
given simple graph may plausibly lie within any of the spaces, defined by the presence
or absence of self-loops, multiedges, and stub-labels. Therefore, in order to choose
the appropriate graph space for a null model, we introduce three questions about the
graph and the system that produced it.

Question I: Are There Self-Loops in the Graph? For example, a citation net-
work consisting of papers (as vertices) and their citation relationships (as edges)
cannot have self-loops, since a single paper can never cite itself. On the other hand, a
network of authors (as vertices) and their citation relationships (as edges) may very
well have self-loops since authors can, and do, cite their own work. Note that an
observed network of authors and their citations ought to reside within a graph space
allowing self-loops, even if a particular observed network has no self-loops. However,
in some cases, the method of data collection or recording may itself preclude self-
loops—even if a self-loop would be reasonable and interpretable—and in such cases,
the relevant graph space should not include self-loops.

Question 2: Are There Multiedges in the Graph? For example, a network of
contacts among barn swallows—analyzed in section 5.2—in which each edge repre-
sents an observed interaction between a pair of birds, may have multiedges corre-
sponding to multiple observations of an interaction between the same pair of birds.
On the other hand, a protein-protein interaction network, in which two proteins are
connected if they interact, cannot ever have a multiedge since interactions in this
context are conceptually boolean. Note that an observed network may reside within a
graph space allowing multiedges, even if a particular observed network has no multi-
edges. However, as in Question 1, in some cases, the method of data collection or
recording itself may preclude multiedges—even if a multiedge would be reasonable
and interpretable—and in such cases, the relevant graph space should not include
multiedges.

If the answers to the first two questions are both no, then the space of simple
graphs is the appropriate one. For the purposes of sampling from a simple configura-
tion model, there is then no meaningful difference between vertex- and stub-labeled
spaces. One need only ensure that the graph sampling algorithm correctly samples
from the space of simple graphs (a nontrivial task further discussed in section 2), due
to the fact that any ensemble of vertex-labeled simple graphs can easily be converted
into an ensemble of stub-labeled simple graphs, and vice versa (see section 4 for fur-
ther discussion). However, if the answer to either of the previous questions was yes,
indicating that the graph space contains self-loops, multiedges, or both, we pose a
key third question.

Question 3: Is the Graph Space Stub-Labeled or Vertex-Labeled? Consider a
pair of vertices connected by two edges. If swapping the edges so that they cross, as
shown in Figure 2, produces a distinct graph, the space is stub-labeled. Alternatively,
if crossing the edges either produces a graph with the same interpretation or produces
a nonsensical graph, the space is vertex-labeled.
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Question 1: loops? Question 3: vertex- or stub-labeled?
stub-labeled
x These configurations are . . . A
Y o [ ) @® - twographs

« one graph, drawn two ways — |—

multigraph

« one valid; two nonsensical

% PRIV smole oony [ ) @ - one valid; one nonsensical — |—
% (skip Q3)
a -0
"g ‘ ‘ multigraph loopy ‘ ‘ . t)hr::Z?arsr’:?Zrawn three ways
5
| W ]

Y

vertex-labeled

Fig. 2 Choosing a graph space. Three questions must be answered in order to correctly choose a
configuration model graph space. Questions 1 and 2 address whether the graph has, or could
possibly have, self-loops and multiedges. If the space permits self-loops, multiedges, or both,
then Question 3 addresses whether the space is vertex-labeled or stub-labeled. These questions
are explained in detail in section 1.5.

There are a number of instances where a graph should be treated as vertex-labeled
rather than stub-labeled. For example, if the stubs are ordered (e.g., temporally) in
a way that would make swapping nonsensical, the space of graphs is vertex-labeled
in spite of the fact that the stubs have identities. Such a situation is commonly
encountered when studying a telephone network (also called a call detail record or
CDR), where edges represent phone calls between individuals. If a pair of individuals
is recorded sharing two phone calls, it is meaningless to consider the crossed graph
that connects the stub associated with the first call and the first individual to the stub
associated with the second call and the second individual, as this swap represents a
graph that could never have been observed. See section 5.2 for a concrete exploration
of these differences. If, on the other hand, the crossed edges and parallel edges as
shown in Figure 2 are distinguishable and plausible, the space of graphs should be
stub-labeled. For example, in a network of intermarriages between families or villages,
an edge may correspond to an individual from one village marrying an individual from
another village. Here, different sets of marital pairings are meaningful and distinct,
indicating that the graph space is stub-labeled.

One alternative approach to answering Question 3 involves considering the adja-
cency matrix of the graph. For a vertex-labeled space, each graph corresponds to a
single, unique adjacency matrix, and each adjacency matrix corresponds to a single,
unique vertex-labeled graph. On the other hand, multiple stub-labeled graphs have
identical adjacency matrices, and a valid adjacency matrix corresponds to a stub-
isomorphism class of stub-labeled graphs, as shown in Figure 1. Thus, Question 3
may be answered by considering whether the adjacency matrices corresponding to the
graph space are unique and distinct objects, or whether repeated adjacency matrices
are allowed in the ensemble.

Answers to the first two questions in this section fully specify whether the graph
space is simple, loopy, multigraph, or loopy multigraph, and the answer to the third
question determines whether the space is stub-labeled or vertex-labeled. Since, for the
purposes of sampling simple graphs or analyzing network properties that are functions
of the adjacency matrix, there is no practical difference between stub-labeled and
vertex-labeled spaces, we may often treat these as equivalent and focus on the seven
distinct and noninterchangeable spaces of graphs just described.
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Organization. In section 2 we describe space-specific Markov chain Monte Carlo
algorithms that provably generate uniform samples from the graph spaces discussed
above. Alternative methods for sampling random graph null models are discussed
in section 3, and related questions about counting the number of graphs in a given
graph space are covered in section 4. Section 5 employs the samplers from section 2,
examining the questions and decisions outlined in this introduction in the context
of three separate applications of configuration model null models to study empirical
network structure. Readers whose primary interest is understanding the practical
consequences of configuration model choices are invited to skip sections 2—4 and go
directly to section 5, though the earlier sections establish the procedures employed
therein.

2. Markov Chain Monte Carlo Sampling. In this section we establish theoret-
ical justifications for the use of Markov chain Monte Carlo (MCMC) methods to
uniformly sample from graph spaces with a fixed degree sequence, with specific con-
siderations for multiedges, self-loops, and vertex- or stub-labeling. In all methods
presented in this section, a Markov chain over the desired space of graphs is designed
to have a stationary distribution that is uniform over the entire space. We emphasize
key differences between sampling stub-labeled and vertex-labeled graph spaces, and
furnish pseudocode for all the MCMC sampling algorithms that we analyze.*

We begin by reviewing the double edge swap Markov chain method for sampling
stub-labeled loopy multigraphs, the easiest space in which to understand the valid-
ity of the sampling procedure. We outline the three sufficient conditions (regularity,
aperiodicity, connectivity) that combine to establish that random double edge swaps
on stub-labeled loopy multigraphs have a unique and uniform stationary distribution.
The corresponding lemmas and theorems are then reported, with references provided
for known proofs, for stub-labeled simple graphs and stub-labeled multigraphs (with-
out loops).

Following the treatment of stub-labeled graph spaces, we then characterize Markov
chains with stationary distributions that are uniform over vertex-labeled graph spaces.
These chains have not previously been described, though they are closely related to
existing methods for sampling the space of contingency tables with fixed marginals
[134], a problem from the statistics literature that is discussed in the introduction.

Sampling from spaces of loopy graphs (without multiedges) is not discussed in
this section. Such spaces lack certain key properties necessary for sampling methods
involving double edge swap routines to succeed. We elaborate on this matter in section
3, where we also discuss other methods for graph sampling, including alternative
Markov chains as well as direct sampling techniques.

2.1. Edge Swap Markov Chains. First developed for bipartite simple graphs
[14] and directed simple graphs [117], Markov chain traversals of graph spaces are
popular ways to sample from a variety of graph spaces [96, 6, 106]. If the Markov
chain is constructed so that the stationary distribution of the chain is the uniform
distribution over the desired graph space, samples taken from this chain at sufficiently
spaced intervals (see the discussion of mixing times in section 2.5) can be treated as
independent uniform samples from the space.

The fundamental gadget underlying the approach is a randomized way of gen-
erating new graphs from existing graphs. Seemingly rediscovered multiple times

4Implementations in Python are available at https://github.com/joelnish/double-edge-swap-

mcme.
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(u, ), (x,y) ~ (u,2), (v,y) (u,v), (y, ) ~ (u,y), (v,2)

Fig. 3 Double edge swaps. Double edge swaps alter a graph’s structure without changing the degree
sequence. FEach pair of edges may be swapped in two different ways: (left) (u,v), (x,y) ~
(u,2), (v,y) and (right) (u,v), (y,z) ~ (v, y), (v, z).

[65, 119, 106, 16], the most popular way to alter a graph without changing the degree
sequence is the double edge swap, first suggested by Petersen in 1891 [115] and de-
picted in Figure 3. Let {uq,...,ux, } denote the set of edge stubs for a vertex u with
degree k,. Across the literature, double edge swaps are also sometimes referred to as
degree-preserving rewirings [22, 131], checkerboard swaps® [126, 61, 6], tetrads [135],
or alternating rectangles [117].

DEFINITION 2.1 (double edge swap, stub-labeled). A stub-labeled double edge
swap replaces a pair of stub-labeled edges (u;,v;) and (xp,yq) with stub-labeled edges
(ui,xp) and (vj,yq)-

Explicitly labeling stubs emphasizes that the stub-labeled double edge swap differs
from its vertex-labeled version. That said, the notation of tracking stubs is largely
unnecessary as the exact labels of stubs can be inferred in context and standard
network analyses (of assortativity, modularity, etc.) do not consider stub labels. For
a pair of edges (u,v) and (z,y) there are two possible swaps, as shown in Figure 3.
As a shorthand, we denote these possible swaps as (u,v), (z,y) ~ (u, ), (v,y) and
(,0), (9, ) ~ (u,y), (v, ).

In contrast to arbitrary edge rewires [21], double edge swaps preserve the degree
distribution of the graph. Notice, however, that some double edge swaps can create
self-loops, e.g., (u,z), (u,y) ~ (u,u),(x,y), as well as multiedges, e.g., when any
produced edge replicates an existing edge. The way such swaps are handled has
important consequences for the stationary distribution of the Markov chain.

Many of the properties of the double edge swap can be understood as graphical
properties of the graph of graphs, the state diagram of the Markov chain in the space
of graphs. We construct the graph of graphs associated with a degree sequence by
letting each graph with the specified degree sequence be a vertex and connecting two
vertices (i.e., graphs) with an edge if one double edge swap can transform one graph
into the other. We use G(k) or G to generically denote a graph of graphs with a
specified degree sequence k = {k; };cyv. Throughout the text we only consider graph
spaces with a given degree sequence, and as a consequence we almost always suppress
the degree sequence k from the notation, denoting a graph of graphs as simply G.
With a few simple yet crucial modifications, sampling graphs using a random walk on
G creates a Markov chain with a stationary distribution that is uniform over a desired
graph space with a given degree sequence.

The statements in the following sections can be stated either in the language of
Markov chains or in the language of graph properties of G. To prove that samples

5Checkerboard swaps are frequently implemented by selecting four vertices at random [6], while
double edge swaps choose two edges at random. We focus on selecting edges at random as it is more
efficient on sparse graphs.
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from the Markov chain asymptotically obey a uniform distribution over a space of
graphs, we show that by correctly specifying state transition probabilities, the chain
satisfies three conditions:

(i) that the transition matrix of the chain is doubly stochastic (G is regular®),

(ii) that the chain is irreducible (equivalently, G is strongly connected”), and

(iii) that the chain is aperiodic (G is aperiodic®).
The regularity of G implies that the stationary distribution is uniform. A Markov
chain that is both irreducible and aperiodic (G is connected and aperiodic) is said to
be ergodic. This property guarantees that there is an unique stationary distribution
that fully describes the long-term behavior of the chain. Aperiodicity of G is often
immediate and is particularly important if one wishes to subsample a Markov chain,
a common strategy where only an infrequent set of samples (less sequentially corre-
lated than the full set of samples) is retained. Once regularity and aperiodicity are
established for loopy multigraphs, we show that with the appropriate modifications
to transition probabilities, these properties also hold for the graph of graphs associ-
ated with any subspace of loopy multigraphs with a fixed degree sequence, whether
vertex-labeled or stub-labeled. In contrast, connectivity of G (the irreducibility of
the Markov chain) is not always guaranteed and requires a nontrivial proof for many
graph spaces, but is critical to ensuring that all possible graphs are sampled.

2.2. Markov Chains on Stub-Labeled Loopy Multigraphs. We begin by con-
sidering the simplest graph space for constructing and analyzing double edge swaps,
Qiﬁ};b, where stub denotes stub-labeled, m denotes an allowance for multiedges, and [
denotes an allowance for loops. Further, let M = % > icv ki denote the total number

of edges in any graph in the graph space.

DEFINITION 2.2 (graph of loopy multigraphs, stub-labeled). For some predefined
degree sequence k = {k;}, the graph of stub-labeled loopy multigraphs gsfub =
{yptub, S““b} is a directed graph, where the vertex set Vét“b is the set of all stub-
labeled loopy multigraphs with degree sequence k and there is a directed edge (G1 —
Go) € 55”#1’ iff there exists a stub-labeled double edge swap that transforms G € Vs’fjl‘b
into Gy € VSt“b.

For the space of loopy multigraphs, all edges in the graph of graphs gst“b are
reciprocated: any double edge swap of distinct edges leads to a graph in the space and
the double edge swap on (u,v), (z,y) ~ (u,x), (v,y) can be undone by the “reciprocal”
double edge swap (u, x), (v,y) ~ (u,v), (z,y). Note, however, that double edge swaps
in other spaces are not necessarily reciprocated by the same number of swaps.

We now show the three necessary conditions: that gsfub is regular, connected,
and aperiodic.

LEMMA 2.3. Ql‘itrf:b s a reqular graph.
Proof. For each graph G; € Vfﬁ}fb there are (1‘2/[) pairs of edges and M (M — 1)
possible double edge swaps that each correspond to a unique graph-graph transition

edge into and out of G;. We immediately see that QSt“b is M(M — 1) regular, where
each vertex has M (M — 1) incoming and outgoing edges. O

6 A weighted directed graph is regular if every vertex has the same total out-degree weight and

total in-degree weight. For unweighted graphs, regularity implies all vertices have equal degree.

7A graph is strongly connected if every vertex can be reached from any other vertex.

8A graph is aperiodic if the greatest common divisor of the lengths of all cycles in the graph is
one.
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Next, the following lemma, first proved by [47] and largely provided by Newman in
[106], gives connectivity for stub-labeled loopy multigraphs with any specified degree
sequence.

LEMMA 2.4. gitm“b is a strongly connected graph.

Proof. First, we note that it is possible to permute stub labels using double
edge swaps: for a graph G; € Vij};b with vertex w with degree at least 2 (ver-
tices with degree 1 have only a single possible stub-labeling), a double edge swap
(us, ax), (be,us) ~ (us,be), (uj,ar) swaps two labeled stubs of u. Since double edge
swaps allow for pairwise swaps of stubs, all possible stub-labelings within a given stub-
isomorphism class of graphs are connected within fo;;jb (or any other stub-labeled
space we discuss). The remainder of the proof therefore only requires showing that
every stub-isomorphism class is connected to every other one.

To complete the proof, we drop stub labels and show how to construct a path
from any Gy = (Vi, E1) € Gt to any nonisomorphic Gy = (Va, Es) € gitm“b such that
each step in the path creates and does not eliminate edges in Eo. Let €12 = |E}\ E5],
where the asterisks denote that the stub labels have been dropped from the edge
sets. Since €12 = 0 if and only if G is isomorphic to G, it suffices to show that
for any nonisomorphic graphs G; and G there exists a neighbor of G, G3, with
€32 <e€12— 1.

Since €12 > 0, there exist (u,v) € E3 \ EY. However, since the degrees of u and v
are, respectively, the same in both G and G, there must be edges (u,x) and (v,y)
in Ef \ E5. Performing the double edge swap (u,z), (v,y) ~ (u,v),(x,y) creates
a graph Gz with edge (u,v) and thus with €32 < €19 — 1. Since €2 is finite, a
repeated application of this argument eventually produces a path, and therefore gfﬁ}ib
is connected.

LEMMA 2.5. gf,t,::b is an aperiodic graph.

Proof. If G € Vﬁfﬁb has only a single edge, gf’?jb is trivially aperiodic since
|Vﬁf}jb| = 1. If G has two edges (u,v) and (x,y), then g;tmub contains both a cy-
cle of length 2 (because all transitions are reciprocated) and also a cycle of length 3:
(u,v), (z,y) ~ (u,z), (v,y) followed by (u, z), (y,v) ~ (u,y), (x,v) and (u,y), (v, z) ~~
(u,v), (z,y). The greatest common divisor of the cycle lengths 2 and 3 is 1, and there-
fore gitm“b is aperiodic. O

The following theorem assembles the above properties to establish the desired
uniformity of the MCMC sampler.

THEOREM 2.6. A random walk on Ql“i%b is ergodic and has a uniform stationary
distribution.

Proof. Since gfﬁjfbb is strongly connected (Lemma 2.4) and aperiodic (Lemma 2.5),

random walks on GF'“0 are ergodic. Since Gi'%t is also regular (Lemma 2.3), it has

the unique stationary distribution ]

1
Vil
Thus, we conclude that a Markov chain defined as a random walk on gi’,fjjb in fact
samples from the uniform distribution of stub-labeled loopy multigraphs, as desired.
A similar MCMC approach can sample the other graph spaces under analysis here,

though the proofs are slightly more involved.

2.3. Markov Chains on Other Stub-Labeled Graph Spaces. We now show that
with some care it is possible to construct Markov chains defined over the other stub-
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labeled graph spaces we have discussed such that their stationary distributions are
also uniform. We establish this uniformity by deriving state transitions that ensure
the chains are regular, connected, and aperiodic. Our results here apply to spaces of
either simple graphs or multigraphs with a given degree sequence. The space of loopy
graphs (without multiedges) with a given degree sequence is not connected by double
edge swaps for all degree sequences and so we do not discuss it here; see section 3 for
more details on that space.

DEFINITION 2.7 (graph of multigraphs and graph of simple graphs, stub-labeled).
For a degree sequence k = {k;}, the graph of stub-labeled simple graphs Gt =
{ystub gstuby s q directed graph of simple graphs. For distinct G; and G in V', q
directed edge (G; — G) is in E3tub if and only if there exists a double edge swap that
transforms G; into G;; for any double edge swap that would transform G; to a graph
G that is not in Vstub there instead exists a directed self-loop G; — G;. The graph
of stub-labeled multigraphs Gt"* is defined similarly for multigraphs, with subscripts
of m where appropriate.

A critical difference between the definitions of Q‘;t“b and g;;fub compared with
the earlier definition of gitm“b is the inclusion of directed self-loops G; — G; for each
swap that would leave the space. This modification essentially employs the “swap
and hold” [6] (also called “trial swap” [96]) method to ensure the graph of graphs is
regular.?

Indeed, we will now show that ggtub and g;;fub are both regular and aperiodic.
As a result, extending Theorem 2.6 only requires space-specific proofs of connectivity,
which we provide.

LEMMA 2.8. G5%0 and G5t are regular graphs.

Proof. Asin Lemma 2.3, a graph G; in either space has (]g) pairs of edges, which
correspond with M (M —1) possible double edge swaps. Notice that any possible swap
from G; to another graph G; in the space is reciprocated, while any swap that would
go to a graph outside of the space corresponds to an incoming self-loop, as constructed
in the definition of G5*“* and G5!“*. Thus, any graph G; in either of these two spaces
has in-degree and out-degree M (M — 1). |

LEMMA 2.9. G5%0 and G5t are aperiodic graphs.

Proof. If there are any self-loops in the graph of graphs (where self-loops corre-
spond to rejected swaps) and the graph of graphs is also connected, then it is aperi-
odic. Meanwhile, if the graph of graphs does not have any rejected swaps (e.g., when
max;ey k; < 2), then it has the exact same structure as gitm“b and is thus aperiodic
by Lemma 2.5. O

Before proving connectivity of the graph of graphs in the next lemma, we note
that the proofs of Lemmas 2.8 and 2.9 are easily and directly applied to any subspace
of stub-labeled loopy multigraphs with fixed degree sequence (e.g., subspaces of graphs
consisting of a single connected component, or subspaces with a constrained number
of triangle motifs). However, despite the fact that regularity and aperiodicity are easy
to establish for the graphs of graphs corresponding to such subspaces, proofs of their

91n spaces featuring graphs without self-loops, each graph will have exactly Ziev (kzi) swaps that
could create self-loops; thus regularity is preserved if swaps that create self-loops either resample the
current graph or are all ignored as possible swaps. There is a computational benefit from ignoring
self-loop-creating edge swaps (as opposed to resampling the current graph), but it is likely small for
most degree sequences.
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connectivity, if they are possible at all, require more complicated and subspace-specific
constructions and are considerably more involved. In fact, as noted above, for loopy
graphs (without multiedges) connectivity does not hold for all degree sequences; see
section 3. Below we establish the connectivity of G5¢“* and G*“® for any given degree
sequence.

LEMMA 2.10. G5t s a strongly connected graph.

Proof. The proof that gffm“b is connected (Lemma 2.4) can be adjusted very
slightly for the absence of self-loops. In the proof of Lemma 2.4, if the two edges
being considered for a double edge swap share an endpoint vertex, then rewiring
(u,z) and (v, z) creates the desired edge (u,v) but also the self-loop (z,x), and thus
is not a valid swap as it would not stay within the space of loop-free multigraphs.
But since x has two edges contained in E; \ E2 and z has the same degree in both the
graph Gs and Gy, there must exist at least one edge (z,2) € Es \ E1, where z # u,
z # v. Rewiring (u,v) and (z,z) in Gy produces a neighboring graph G5 with edge
(u,x) and thus €13 < €12 — L. O

LEMMA 2.11. G5t js a strongly connected graph.

We do not provide a proof here as this result has been proven independently
many times: in 1962 [13], stated without proof in 1973 [46], proved twice in the same

monograph but by different authors in 1981 [48, 131], in 1994 [16], and most recently
in 2010 [139].

THEOREM 2.12. A random walk on G3t* or GS*b is ergodic and has a uniform
stationary distribution.

Proof. Being regular (by Lemma 2.8), connected (by Lemmas 2.10 and 2.11), and
aperiodic (by Lemma 2.9) graphs, random walks on G5¢“* and G5'“® are ergodic and

have the unique stationary distributions IVi“bl and |v$ub|’ respectively. 0
m s

We conclude this subsection on sampling stub-labeled graph spaces with pseudo-
code for a uniform sampling algorithm. The important distinction between this al-
gorithm and most incorrect algorithms (see section 3.1 for a further discussion of
sampling algorithms known to be nonuniform) is that incorrect algorithms have a
tendency to overlook the resampling step.'°

2.4. Markov Chains on Vertex-Labeled Spaces. For any analysis of simple
graph null models, sampling from the vertex-labeled space is equivalent to sampling
from the stub-labeled space: the two distributions are proportional within stub-
isomorphism classes (see section 4 for details on this conversion). For nonsimple
graphs, the vertex-labeled and stub-labeled spaces are no longer cleanly proportional,
but we show it is possible to adapt the double edge swap MCMC procedures to uni-
formly sample vertex-labeled graph spaces. We begin with the following definition,
closely related to the double edge swap defined for stub-labeled spaces.

DEFINITION 2.13 (double edge swap, vertex-labeled). A vertex-labeled double
edge swap replaces pair of edges (u,v) and (x,y) with edges (u,x) and (v,y).

As in the stub-labeled setting, the vertex-labeled double edge swap leads to a
Markov chain on the graph of vertex-labeled graphs, which we generically denote with
Gve"t (in contrast with G**“?). In any graph space, stub-labeled double edge swaps

19Tmplementations in Python are available at https://github.com/joelnish/double-edge-swap-

mcme.
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map onto vertex-labeled double edge swaps simply by ignoring the stub-labeling:
a vertex-labeled graph of graphs GV can be created by treating stub-isomorphic
graphs within G5'"* as a single graph in G"¢"*. This construction of G’¢"* gives def-
initions for Gyert, Grert, and GY'* as agglomerated, weighted, and directed versions
of the stub-labeled graphs of graphs leﬁﬁb, Gstub and Gstub| respectively. As a result,
they immediately inherit the strong connectivity and aperiodicity properties of their

respective stub-labeled spaces, as follows.

LEMMA 2.14. GPert Gguert - and G2 are strongly connected.!!

ILm 2 Im
Proof. Each of the vertex-labeled graphs of graphs can be created by repeatedly
combining vertices from the analogous stub-labeled graph of graphs until all stub-
permutations of the same vertex-labeled graph have been combined. Since iteratively
combining vertices preserves connectivity, gﬁ%t, vert “and GY¢t inherit strong con-

nectivity from G;tub, Grert and Gstub. 0

LEMMA 2.15. GUert Gvert and gﬁfn” are aperiodic graphs.

Proof. For any fixed degree sequence, the proofs of Lemmas 2.5 and 2.9 either
apply directly, and thereby establish aperiodicity, or they do not apply because they
necessitate double edge swaps between two graphs in the same stub-isomorphism
class. However, even in this case, the double edge swap between graphs in the same
stub-isomorphism class implies there is a self-loop in the graph of graphs, and the
graph of graphs is thus aperiodic. 0

Algorithm 1 Stub-labeled MCMC

Input: initial graph Gy, graph space (simple, multigraph, or loopy multigraph)
Output: sequence of graphs G;
for i < number of graphs to sample do
choose two edges at random
randomly choose one of the two possible swaps
if edge swap would leave graph space then
resample current graph: G; < G;_1
else
swap the chosen edges, producing G;
end if
end for

While connectivity and aperiodicity of vertex-labeled graphs of graphs follow di-
rectly from the properties of the stub-labeled spaces, regularity is more complicated.
The analysis of stub-labeled graphs of graphs relied on the fact that each swap had
a unique reciprocal swap. This reciprocity is not present in vertex-labeled graphs of
graphs. For example, consider g;jf,:t on a degree sequence as simple as {2,1,1}. As
shown in Figure 4(a), the graph of graphs G/¢"*({2,1,1}) contains only two possible
graphs: G (with self-loop (z,z) and edge (u,v)) and Go (with two adjacent edges
(u,z) and (v,z)). Every swap originating in Gy creates Go (both swaps of (z,x)
and (u,v) create (u,z) and (v,z)), but only one of the two possible swaps origi-
nating in G reaches G1 ((u, z), (v, x) ~ (u,v), (x,z) corresponds to Gy — G1, while

11 Additionally, the graph space which allows multiedges and single self-loops is connected under

edge swaps, while the graph space which allows only single edges, but potentially multiple self-loops,
is disconnected under edge swaps for some degree sequences [110].
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Fig. 4 Transition probabilities for uniform sampling. The graph of vertez-labeled loopy multigraphs
Grert({2,1,1}) contains two possible graphs G1 and G2. (a) A random walk on this graph of

graphs has Pr(G1 — G2) = 1 but Pr(G2 — G1) = %, and therefore its corresponding Markov
chain will not have a uniform stationary distribution since the graph of graphs is not reqular.
(b) If transition probabilities are modified such that each graph has equal in-degree weight
and out-degree weight (i.e., transition mass), and these weights are equal to each other, the
corresponding Markov chain will have a uniform stationary distribution and will therefore
sample each graph with equal probability.

(u, ), (x,v) ~ (u,x), (x,v) corresponds to Gy — Gz). If unaltered, a random walk on
Gpert({2,1,1}) has the nonuniform stationary distribution (Pr(G1) = 3,Pr(Gz) = 3).

l,m
Restoring the regularity of G/¢7*({2,1,1}), as in Figure 4(b), is achieved by rejecting

vert
l,m

the swap G; — Gy with probability % and instead looping back to G;. Figure 4
shows a difficulty arising from self-loops; vertex-labeled swaps of multiedges suffer a
similar problem with a similar resolution. As we will show, an extra layer of rejection
sampling suffices to restore the uniform stationary distribution for any vertex-labeled
graph.

There are two natural ways to implement rejection sampling for vertex-labeled
graphs, which we provide in Algorithm 2 and in the supplemental material, Algo-
rithm SM1. The simpler of the two approaches, Algorithm 2, employs a rejection
sampling that modifies all swaps G; — Gj, © # j, to have probability % The
following lemma demonstrates that Algorithm 2 achieves this uniform probability on
all possible swaps.

LEMMA 2.16. A Markov chain defined by a random walk on GP¢Tt, GU¢rt | or GUert

ILm 2 Im
with transition probabilities given by Algorithm 2 has a doubly stochastic transition

matriz.

Proof. Algorithm 2 randomly selects two edges e; and e; and also selects one
of the two possible ways to swap e; and es. The goal is to make all swaps equally

probable. If e; or es is a self-loop, then the potential swap is rejected with probability
L. If not rejected, then if both edges connect the same vertices (i.e., e; = e3), the

2

swap is made with probability — 4 2 where we, is the multiplicity of edge ey,
€1

1

wel—1)7
Weq Wey

and otherwise the swap is made with probability If no swap is made or

the proposed swap would not change the graph (e.g., (u,v)(v,v) ~ (u,v)(v,v)), the
current graph is resampled by the chain. To see that these rejection probabilities give
all swaps an equal overall probability of success, consider the following table of double
edge swap cases, which presents the form of each possible swap, the number of such
possible swaps, and the acceptance probabilities used by Algorithm 2.

€1,€2 ~ €3, e4 # possible Pr(perform swap)
stub-labeled swaps | if e or eg is a self-loop | if e1 = e2 if e; # e2
(uv U)v (xa y) ~ (u7 (E)7 (v7 y) WyvWgy - - 1/(U)uvwzy)
(u7x)7(xv U) ~ (u,v), (wi) WyzWgo - - 1/(wuzwgw)
(%, ), (u,v) ~ (u,z), (T,v) 2Waz Wyv 1/2 — 1/ (WazWuv)
(u,u), (z,z) ~ (u,z), (u,z) Wy Wz 1/2 - 1/ (Wyuwzz)
(u, ), (u, ) ~ (u,u), (z, ) (w;”) - 1/(“”2”) -
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swaps on 4 vertices swaps on 3 vertices Wag Wy

w,

“yt,
2
N

“wyy
g

swaps on 2 vertices

W (wan—1)

swaps on 1 vertex
5 | D p —p |D
Wuilluu x 2 Wy Wz

Fig. 5 Possible double edge swaps for Algorithms 2 and SM1. Algorithms 2 and SM1 can be un-
derstood by examining the probabilities of each double edge swap that is possible for a given
graph. The diagram’s labeled transitions give the number of possible double edge swaps that
transition between each graph, organized by the number of unique vertices involved, where
w;; are the edge multiplicities in the originating graph. Uniform sampling of a graph space
can be achieved by down-sampling transitions to be equal in both directions.

On a pair of edges containing a self-loop, both swaps result in the same edges
post-swap, giving a factor of 2 to the number of possible swaps of that type. Notice
also that multiplying the factors in a given row results in the same overall transition
mass, 1, for each row. Thus, every swap is equally likely with probability m
and the transition matrix is doubly stochastic. 0

As a direct result of Lemma 2.16, the sum of edge weights directed to any graph
in G with these transition probabilities equals 1. Algorithm 2 can be understood as
changing general double edge swap stub-labeled spaces into double edge swap vertex-
labeled spaces for any subspace of loopy multigraphs with a fixed degree sequence.
Assembling Lemmas 2.14, 2.15, and 2.16 gives the following theorem.

THEOREM 2.17. A Markov chain on GP¢'t, GU¢" | or GVe™ with transition proba-

lym 7
bilities given by Algorithm 2 is ergodic and has a uniform stationary distribution.

Proof. Lemma 2.16 gives that ﬁ, \le and ﬁ are the respective stationary
distributions; strong connectivity (Lemma 2.14) and aperiodicity (Lemma 2.15) give
that the Markov chain is ergodic. ]

We conclude this subsection on sampling vertex-labeled graph spaces with pseudo-
code for the uniform sampling algorithm, Algorithm 2, used in the above proofs. A
more efficient but more complicated approach is given in Algorithm SM1 in the supple-
mental material. This more efficient algorithm achieves regularity by computing both
the forward and reverse probabilities of any given double edge swap according to the
cases in Figure 5. It then down-samples (rejects) the higher probability swap to have
the same probability as the lower probability swap. For example, in Algorithm SM1 a
double edge swap of the edges (u,v) and (x,y) (on distinct vertices u, v, z,y) to form
(u,y) and (z,v) is accepted with probability min(1, ﬁ), whereas Algorithm 2 ac-

1
Wy Wy

cepts this swap with probability . While Algorithm SM1 requires calculating
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Algorithm 2 Vertex-labeled MCMC
Input: initial graph Gy, graph space (simple, multigraph, or loopy multigraph)
Output: sequence of graphs G;
for ¢ < number of graphs to sample do
choose two distinct edges e; and es uniformly at random
randomly choose one of the two possible swaps
if edge swap would leave the graph space then
resample current graph: G; < G;_1

else
P<+1
if e; and ey are copies of the same multiedge then
P« —2F
We, (wﬁl -1)
else
R a—
Weq Wey
end if
if ey or ey are a self-loop then
P+ P
end if

if Unif(0,1) < P then
swap chosen edges to produce G;
else
resample current graph: G; < G;_1
end if
end if
end for

these forward and reverse probabilities for each swap, we observe empirically that it
mixes substantially faster on degree sequences with higher degrees.

2.5. Mixing Times. As discussed in the previous section, an MCMC sampler
based on double edge swaps will eventually sample from Ql“”fm"b, Gstub - gstub, Grert,
geert and GUert uniformly. A natural question, and one of practical importance, is how
many swaps it takes before a sample from the Markov chain is negligibly correlated
with the starting graph. This question is usually studied in the language of mizing
time, the number of steps in a Markov chain required to produce a sample a prescribed
distance from the stationary distribution of the chain [84]. A Markov chain on a graph
space is said to be rapidly mizing if the mixing time can be expressed as a polynomial
in the number of vertices. Empirical investigations tend to support the notion that the
mixing times of edge swap MCMC samplers tend to be reasonable and not prohibitive
[99, 106]. Theoretical investigations have identified various conditions on the degree
sequence k which rigorously support these observations [36, 63]. However, the case of
general k is yet to be fully understood.

As first demonstrated in [121], the most common argument to derive mixing
time bounds uses a multicommodity flow argument, and the most common focus
has been on regular simple graphs and regular directed graphs. Thus far, rapid
mixing has been proved for double edge swap MCMC methods on simple graphs
with regular degree sequences [36], regular directed graphs [62], and half-regular and
almost half-regular bipartite graphs [95, 51]. Beyond regular graphs, there are bounds
based on the minimum and maximum degrees, which give polynomial mixing in time
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O(ktt, . M°(Mlog(M) — loge)) if 3 < kpae < 2v/M [63]. A loosely related set of
investigations shows that while the shortest paths in Gt can be approximated to
within a factor of 7/4, finding the shortest path is NP-hard [16, 50].

Mixing time results for nonsimple graphs are, by comparison, poorly developed.
While stub- and vertex-labeled spaces have different transition probabilities and differ-
ent structures, recall that vertex-labeled graphs of graphs can be created by repeatedly
merging vertices in the corresponding stub-labeled graph of graphs. As a result, the
total diameter of a vertex-labeled graph of graphs G¢"* is necessarily always smaller
than the corresponding stub-labeled graph of graphs G**“*, but the additional layer
of rejection sampling in vertex-labeled MCMC chains may lead to mixing times being
large for degree sequences where multiedges and self-loops are more common. Deter-
mining the conditions, if any exist, in which the smaller diameter of vertex-labeled
spaces corresponds to faster mixing times is an interesting open question.

In practice, there are well-accepted diagnostics to numerically assess the quality of
MCMC mixing [58]. One popular method is to compare the variance inside a sequence
to variance across multiple sequences, while other methods analyze the correlation
inside a sequence. These diagnostics are typically performed on a sequence of graph
statistics, rather than directly on a sequence of graphs. Omne complicating factor
with using intersequence variation to assess convergence is the difficulty in finding
independent starting graphs with which to start the chain [20]. Ultimately, when
considering the potential effect of mixing times, it is important to gauge the risk of a
slow mixing time (and thus a biased sampler) against errors associated with uniformly
sampling from an inappropriate space, as is often the case with stub-matching.

3. Other Sampling Methods and Other Null Models. Edge swap Markov chains
are not the only means of sampling from configuration models, nor are configuration
models the most appropriate random graph null model for all analyses. In this section
we briefly review other techniques for sampling configuration models, as well as other
random graph null models that have been usefully employed in other contexts. Very
little is known about the adaptation of the methods in this section to vertex-labeled
graph spaces, but such adaptations are discussed when known.

3.1. Direct Sampling and Other Sampling Methods. Edge swap Markov chain
methods work by randomly manipulating an initial graph to produce a new graph,
with the idea that the stationary distribution of this random process is designed to be
uniform over the graph space. In contrast, “direct” methods sample the same space
by constructing one graph at a time without any dependence on previous samples.
Sampling uniformly from graph spaces is closely related to enumerating the graphs in
a given space, a task commonly known as graph enumeration [10] (see section 4 for
more on these connections).

The stub-matching procedure pioneered by Bollobds [19], also called the pairing
model and discussed in section 1.3, is an example of a direct method for sampling the
space of loopy multigraphs with a given degree sequence. Stub-matching begins with
a prescribed number of half-edges or stubs attached to each vertex in an otherwise
empty graph and then randomly joins pairs of unmatched stubs to form a graph. The
graph created by this procedure is a uniform sample from the space of stub-labeled
loopy multigraphs.

For more restricted graph spaces, i.e., those that omit self-loops and/or multi-
edges, stub-matching must be adapted. Early work on directly sampling simple graphs
with specified degree sequences focused on regular graphs [94], with later results giving
approximately uniform sampling for more general degree sequences [10]. The simplest
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adaptation of stub-matching for restricted graph spaces, e.g., for simple graphs, is to
use rejection sampling: complete a stub-matching procedure, and if the resulting graph
is not in the graph space, reject the sample. This process is repeated until a simple
and admissible graph is returned. Using rejection sampling, an unrejected graph is a
proper uniform sample from the graph space. Unfortunately, rejection sampling for
simple graphs can take exponential time—exponential in the size of the graph—for
some degree sequences with degrees that increase in the size of the graph. In contrast
to rejection sampling, a more efficient approach is to apply sequential importance sam-
pling [17], where edges are possibly rejected during the construction process (rather
than waiting until the end to reject the output graph). The basic idea behind sequen-
tial importance sampling is to guide the matching process by rejecting edges that
push the stub-matching process toward overrepresented simple graphs. Interestingly,
a sequential importance sampling technique whereby each edge is rejected with a prob-
ability ]ZJ’C; is sufficient to approximately sample uniformly for graph spaces where the
max degree kpax 0beys kpax = O(M1/4*T) for some 7 > 0 [10], but this asymptotic
statement does not furnish any clear guarantees for an empirical graph of a fixed size.

Other modifications to stub-matching exist, usually posed in the context of cre-
ating simple graphs, each with a mix of desirable and undesirable properties. One
approach freely matches stubs, which may create a self-loop or multiedge, but such
an edge is immediately removed via a double edge swap [83]. In contrast to rejec-
tion or importance sampling, this loop and multiedge rewiring approach ensures that
a graph from the desired space is produced by each full run of the algorithm, which
may dramatically improve the rate at which samples are produced. However, it unfor-
tunately biases the sampling in ways that are not yet described or understood. Other
methods knowingly generate biased simple graphs via constrained stub-matching, and
each sample’s relative probability is calculated in order to perform a posteriori bias
corrections that reweight the samples to guarantee uniformity [41]. Again, there do
not yet exist bounds on the convergence of such methods to the uniform distribu-
tion desired. More exotic direct sampling procedures include the so-called Go with
the Winners algorithm [3] applied to graph generation [99]. This method employs
stub-matching on a collection of graphs in parallel, replacing failed attempts to create
simple graphs with cloned copies of nonfailed attempts, eventually producing a set of
admissible graphs. Finally, it is possible to define an alternative Markov chain based
on perfect matchings to uniformly sample regular simple graphs [71]; this method can
be adapted to nonregular degree sequences but without efficiency guarantees.

Constructive procedures for determining whether a given degree sequence is graph-
ical (that there exists a simple graph with the given degree sequence [57]), notably
the Havel-Hakimi algorithm [66, 64], are highly nonuniform direct sampling proce-
dures. The Havel-Hakimi algorithm is useful as a starting point for MCMC methods
in contexts where one starts with a degree sequence but no corresponding simple
graph—Havel-Hakimi is guaranteed to efficiently produce a simple graph, which one
can then use as the initial state of an MCMC method.

3.2. Markov Chains for Sampling Other Spaces. Markov chains other than
“double edge swap” chains can be used to traverse other graph spaces with specified
degree sequences, notably spaces of connected graphs, spaces of loopy graphs (without
multiedges), and spaces of directed graphs.

Loopy Graphs (without Multiedges). Sampling methods based on the double
edge swap Markov chain discussed in section 2 are unfortunately not sufficient for
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a reversing a directed triangle b connectivity preserving edge swap c 3 edge swap
A = A X ?’ N

Fig. 6 Other varieties of edge swaps. In addition to the double edge swap, a number of other edge
swaps have been used to construct MCMC samplers of specific spaces. These auziliary swap
routines are mecessary to ensure the underlying graph of graphs associated with the chain
is connected. (a) Markov chains on directed graph spaces require an additional swap that
reverses a directed triangle. (b) The k-Flipper swap for k = 3, swapping the endpoints of
length-3 paths, preserves connectivity spaces of connected graphs. (c¢) Swaps involving more
than two edges enable sampling graph spaces with more complicated constraints.

sampling uniformly from the space of loopy graphs with a specified degree sequence.
The main challenge to sampling is that for certain degree sequences the double edge
swap Markov chain does not connect the entire space of loopy graphs. For example,
the degree sequence {2, 2,2} in the space of loopy graphs admits both a triangle graph
and a graph consisting of three self-loops, but on both graphs it is easy to see that any
proposed double edge swaps would create a multiedge. Thus, the two graphs in the
space are not connected by any sequence of double edge swaps that remain in the space
of loopy graphs, and this lack of connectivity applies to both the stub- and vertex-
labeled spaces. Generalizing this observation, it is the case that the space of loopy
graphs is connected for any degree sequence that can wire a simple graph and is neither
the degree sequence of a path, {2,2,...,2}, nor that of a clique, {n—1,n—1,...,n—1}
[111]. Alternatively, if the Markov chain is modified to occasionally employ a three-
edge triangle-loop swap (the swap (u,u), (v,v), (w,w) ~ (u,v), (v,w), (w,u) and the
reciprocal swap (u,v), (v,w), (w,u) ~ (u,u), (v,v), (w,w)), a basic modification of
Algorithms 1 and 2 suffices to sample uniformly from these spaces; see [111] for more
details.

Connected Graphs. Many real-world graphs are connected, either by design
(e.g., the architecture of the Internet [91]) or by virtue of how they were measured
(using snowball sampling [60] or other traversal techniques). It is known that dou-
ble edge swaps can rewire any connected graph to any other with the same degree
sequence [131, 16]. Therefore, if one correctly rejects swaps that would leave the
space of connected graphs, then Theorems 2.12 and 2.17 would apply. Thus, we can
conclude that there exists a double edge swap MCMC sampler of connected graphs
whose stationary distribution is the uniform distribution over connected graphs with
a prescribed degree sequence. However, there is no computationally expedient way to
certify connectivity'? of the resulting graph for a proposed swap. A useful heuristic
solution is to only check connectivity after completing a longer sequence of swaps
[59, 136].

A more expedient approach for sampling connected simple graphs with a given
degree sequence follows from a Markov chain defined by a different swap: a k-Flipper
Markov chain in a given graph space selects length-k paths uniformly at random
(typically employed with k = 3; see Figure 6(b)) and swaps the endpoints of the
path [88]. This swap clearly results in a graph that has the same connectivity before

12Checking connectivity can be done in O(/]V]) time with each change to the graph [49].
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and after the swap. What is less clear is that a chain utilizing this swap does not
necessarily explore the full space of connected graphs with a specified degree sequence;
a chain occasionally utilizing a small additional swap (dubbed the bowtie swap) is
required to ensure that the graph of graphs is connected, and thus samples the entire
space of connected graphs [52]. This chain has a uniform stationary distribution, and
some mixing time results are known under mild assumptions [52]. Of note, k-Flipper
techniques cannot be extended (in any obvious way) to graph spaces that allow self-
loops, as a k-Flipper swap is unable to ever create a self-loop. Studies of the space of
connected graphs have been focused on simple graphs, and it is an open question to
understand what role the choice of stub-labeling vs. vertex-labeling has in studies of
connected multigraphs.

Directed Graphs. Sampling directed graphs using edge swap Markov chains in-
troduces new subtleties that are not present when sampling undirected graphs. Most
importantly, a directed graph has two separate degree sequences, the in-degree se-
quence and the out-degree sequence, and one may wish to fix either or both of these.
The two sequences are coupled because the sum of the graph’s in-degrees must equal
the sum of its out-degrees. Furthermore, in order for a graph of directed graphs to
be connected under edge swaps, a directed triangle reversal swap is needed; see Fig-
ure 6(a), which reverses the direction of a three edge cycle [75, 117, 78]. Sampling
both stub-labeled and vertex-labeled directed graphs builds on a similar theoretical
framework as undirected graphs [25, 26, 27].

Broadly speaking, as richer network models are considered, the sensible value of
uniform distributions as statistical null models decreases. Developing an appropriate
null model for richer networks, of which directed graphs are one example, requires
carefully considering and modeling a hypothesized generative processes. For example,
a directed version of a citation network should roughly obey causality constraints
(cycles would indicate past papers citing future papers), and the statistical properties
of such a network might be best captured by comparing it to the output of a generative
model that explicitly accounts for publication date.

3.3. Distributions over Graphs with Edge Weights. In applications, graphs
often have scalar weights associated with their edges. In some special cases, these
weights are integers and can be interpreted as the number of edges between vertices.
The graph then is, in fact, a multigraph, and the techniques discussed thus far may be
applied directly. However, in all other cases, where the weights do not have a natural
edge multiplicity interpretation, specifying a null model becomes substantially more
difficult. In particular, a decision must be made regarding whether the null model
should preserve just vertex degrees, or both vertex degrees and vertex total weight (the
sum of the edge weights associated with a vertex). Even in the former, simpler case,
a null model that preserves vertex degrees must choose carefully how to additionally
randomize the edge weights.

To see the difficulty of this problem, consider any double edge swap process where
at least two edge weights are distinct. The original weights could be assigned at ran-
dom to the pair of rewired edges, corresponding to a null model in which edge existence
and edge weight are entirely independent, but this would not preserve the total weight
associated with the involved vertices. On the other hand, edge existence and edge
weights could be chosen to be coupled in some way, but that requires actively placing
assumptions on the nature of the relationships. In general, devising a procedure that
preserves vertices’ degrees and their total weights while randomizing the edges and
weights is an open problem.
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3.4. Other Distributions over Graph Spaces. Last, we note other varieties of
distributions over graph spaces that are sometimes employed as null models. Most
of these models depart from configuration models in that the constraint to an exact
degree sequence k = {k;};cv is relaxed. Often these models exhibit specified well-
studied degree sequences in expectation.

The random graph model most closely related to configuration models is the
Chung-Lu model [32]. Rather than being specified by a fixed degree sequence, the
Chung—Lu model is parametrized by a sequence of expected degrees, and for most
well-behaved degree sequences the model correctly samples graphs with these expected
degrees.

In the context of producing simple graphs, one can also generate a graph via stub-
matching and then remove all self-loops and/or multiedges that have been generated,
a procedure called the erased configuration model or Molloy—Reed configuration model
[102, 109]. Deleting an edge necessarily changes the degree sequence, and thus this
technique will not sample only graphs with the specified degree sequence. For suffi-
ciently bounded degree sequences, it has been shown that asymptotically there will
be only O(1) such deletions in large graphs [102]. Thus, when the degree sequence
lacks large degrees and for applications robust to a small number of edge deletions,
the erased configuration model may provide a suitable approximation to the uniform
distribution over simple graphs.

A separate and significant literature on random graph null models studies en-
sembles of graphs that are the result of random growth processes. The Price model
[39, 40], also known as the preferential attachment model [8], generates random graphs
with heavy-tailed degree sequences (though many other generative processes also gen-
erate such degree sequences [101, 33]). Graphs generated by the Price model have
structural properties very different from graphs generated by configuration models
with the same expected degree sequence: asymptotically almost surely, graphs gen-
erated by the Price model are somewhere dense, while for the corresponding degree
sequences, graphs generated by the erased configuration model (or Chung—Lu model)
are nowhere dense (and in fact have bounded expansion, a stronger property) with
high probability [42]. In other words, graphs that are common under one model are
extremely rare under the other, and vice versa. Other network growth processes in-
clude uniform growth [23], again resulting in graphs with properties different from
graphs grown under the Price model. For empirical graphs that may have resulted
from a growth process, comparing the properties of the graph to the properties of an
ensemble of random graphs generated from a growth model may be appropriate.

Many null models other than configuration models are sampled using Markov
chains. For example, Markov chains can be constructed to sample graphs with fixed
degree-degree correlations, specifically by specifying that each sampled graph has
a fixed joint degree-degree matrix!'? [4, 125, 37]; direct sampling methods exist for
this space as well [9]. There is a nontrivial relationship between graphs with fixed
degree-degree matrices and connected graphs: connectivity imposes constraints on
a degree-degree matrix, e.g., a connected graph of more than three vertices cannot
have any degree-one-degree-one connections. Swaps that involve more edges (e.g.,
see Figure 6(c)) have been tailored to attempt to satisfy more complex constraints
such as a fixed number of triangles or fixed component sizes [130]. However, even

13A degree-degree matriz is a matrix C' where entry C, 1 denotes the number of edges between

vertices of degree k and vertices of degree k’. A graph with a given degree-degree matrix also has a
fixed degree sequence, which can be easily reconstructed from the degree-degree matrix [125].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/08/18 to 198.11.29.131. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

340 B. FOSDICK, D. LARREMORE, J. NISHIMURA, AND |. UGANDER

many edge swaps may fail to connect the space for some constraints. For instance,
the space of graphs with a fixed number of triangles is disconnected, even for triple or
quadruple edge swaps [110]. Another approach is to allow graphs which break some
constraints, but bias edge swaps toward satisfying constraints, such as those used to
sample graphs which satisfy constraints on the counts of arbitrary subgraphs of fixed
size [112].

Exponential Random Graph Model (ERGMs). ERGMs furnish nonuniform dis-
tributions over graph spaces that increase the relative probability of observing certain
structural properties, and they are typically sampled using Markov chain methods
[122], though the mixing times of these chains are sometimes known to be very poor
[15, 30]. ERGMs generally focus on simple graphs, though some recent work has
extended ERGMs to multigraphs [43, 77, 29]; identifying differences between ERGMs
specified in vertex-labeled vs. stub-labeled spaces is an open question. A different
nonuniform triadic closure Markov Chain, related to the Strauss model (a specific
ERGM) [128], has also been proposed and studied for its abilities to replicate empir-
ical subgraph frequencies in social networks [132].

Last, there is an enormous literature on models of community structure in net-
works. The most prominent such model is the stochastic block model [67], which gener-
alized the affiliation model [55]. The stochastic block model has also been adapted to
model overlapping (mixed-membership) community structure [2], community struc-
ture in bipartite networks [80], and hierarchical community structure [114]. Other
related graph null models include the degree-corrected stochastic block model [73] and
the block two-level Erdés—Rényi (BTER) model [76]. The degree-corrected stochastic
block model merges the stochastic block model with techniques from the Chung—Lu
model to target an expected degree sequence.

4. Graph Enumeration. Graph enumeration—counting the number of graphs
within a space—relates directly to the uniform sampling problems discussed in this
paper. Given a vertex-labeled graph G, we can calculate the number of stub-labeled
graphs that are isomorphic to GG, highlighting the difference in size and composition
between stub- and vertex-labeled spaces, as shown, for example, in Figure 1.

By efficiently enumerating this correspondence, it is possible to use a simple
reweighting scheme to convert a uniform sample taken from one graph space to a
uniform sample under another graph space. While theoretically sound, this approach
can fail dramatically in practice for many graph spaces. Graphs that are frequent in
one distribution can be enormously different from the graphs that are frequent under
the other distribution, meaning that unreasonably large sample sizes are required to
overcome biases; see section 5.1 for an illustration of this with an empirical degree
sequence from a collaboration network.

Labeled Graph Spaces. The correspondence between vertex-labeled and stub-
labeled graph enumerations is straightforward. For a vertex-labeled graph G = (V| E)
with a degree sequence k = {k;}, we define gsimpic(G) as the number of stub-labeled
simple graphs that correspond to a vertex-labeled simple graph GG. The set of k; stubs
for vertex i can be arranged in k;! unique permutations, and this simple counting
argument applied to the entire vertex set shows that

n

(1) Gsimple(G) = H k;!l.
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This count depends only on the degree sequence {k;} and not on any other property
of G. In other words, for a fixed degree sequence we see that each graph G in the
vertex-labeled space has the same number of stub-labeled graphs that correspond
to it. Notice that this is true of the two simple graph examples in Figure 1(d),(e).
As a result, for simple graphs—and only for simple graphs—the relative sizes of the
isomorphism classes are the same in the vertex-labeled and stub-labeled spaces. Thus,
an ensemble of random vertex-labeled simple graphs can be converted into a sample
of stub-labeled simple graphs by randomly assigning stub labels to each graph in the
ensemble, and an ensemble of stub-labeled simple graphs can be regarded as a sample
of vertex-labeled simple graphs by simply ignoring stub labels.

For graphs with multiedges or self-loops, it is still possible to count the number of
stub-labeled graphs that correspond to each vertex-labeled graph, but now the mul-
tiplicity depends on more than just the degree sequence. The quantities are derived
by adjusting gsimple(G), the numerator in each quantity, for the number of identical
configurations involving multiedges and/or self-loops. Let w;; be the integer number
of edges between vertices ¢ and j. For a single self-loop, w;; = 1, again counting the
number of edges. The multiplicities for each space are then as follows:

1
(2) Qloo (G) = {sim IC(G) = e —)
py ’ [Lisy wil(2wi)
1
(3) Qmulti(G) = (sim le(G) X =,
' [Tic; wis!
(4) @ (c/ P
Qloopy multi = (simple m o :
Py t p Hi:l wii!(gwm) Hi<j wij!

The conversion factors in the equations above can be enormous, illustrating that,
as stated above, the graphs that are prevalent in one distribution can be extremely
different from those that are prevalent in the other distribution. As a result, a con-
version between stub-labeled and vertex-labeled spaces is an infeasible approach to
sampling from the less easily sampled space.

Unlabeled Graph Spaces. For any enumeration related to the space of unlabeled
graphs (isomorphism classes; see Figure 1(c)), efficient counting is unfortunately infea-
sible. Let psimpie(G) be the number of vertex-labeled simple graphs that correspond to
an unlabeled graph G. It is well known that pgimpie(G) = n!/|Aut(G)|, where |Aut(G)|
is the size of the automorphism group of G, i.e., the number of distinguishable vertex
graph labelings. Determining |Aut(G)| is polynomial-time equivalent to determining
whether two vertex-labeled graphs in the group are isomorphic [93], making it as
computationally difficult as the famous graph isomorphism problem [7], for which the
best-known algorithm is quasi-polynomial. Enumerating the size of the isomorphism
class for loopy graphs, multigraphs, and loopy multigraphs is at least as hard. Thus,
there are no known practical and efficient means of transferring between unlabeled
and labeled graph spaces.

This reasoning also tells us that any sampling method that could produce a uni-
form sample from the space of unlabeled graphs G with a specified degree sequence
would furnish a way to count |Aut(G)|, and thus must take at least quasi-polynomial-
time (unless graph isomorphism is in the complexity class P). It is therefore unlikely
that the uniform distribution over unlabeled graphs will see a polynomial-time direct
sampler, or a Markov chain sampler with a polynomial mixing time.
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5. Applications. In this section we use three real-world examples that demon-
strate how a configuration model can be used as a null model, employing the sampling
procedures outlined in section 2, and how the choice of graph space can have substan-
tial impact on hypothesis tests and scientific conclusions. The first example studies
a graph of collaborations among researchers to show that the choice of null model
graph space greatly impacts null distributions of degree correlations, leading to vary-
ing conclusions about the meaning of the observed degree correlation in the network.
The second example studies a graph of interactions among barn swallows to show that
the choice between vertex-labeled and stub-labeled spaces is nontrivial and directly
impacts conclusions about the underlying animal behavior. Finally, the third example
uses a graph of social support in South Indian villages to demonstrate that the vertex
clusters found by modularity maximization, a popular community detection method
traditionally based on the stub-labeled loopy multigraph configuration model, are
sensitive to the choice of underlying graph space. Together, these examples illustrate
the practical differences between graph spaces and show how the methods presented
in this paper can be applied.'*

5.1. Degree Assortativity in a Collaboration Network. Degree assortativity
measures the extent to which pairs of connected vertices tend to have similar degrees.
This degree-degree correlation is an easily computable and single-valued summary of
edge patterns in a graph, and it has been used to shed light on the organizational
differences between broad categories of social, biological, and technological networks
[105, 106]. Tt is most commonly computed as the Pearson correlation between degrees
of vertices that are connected in the network. It is defined as

(5) ,— 7 2 (u)er Fuko — 1

2
O

where g, and of are the mean and variance of the vertex degrees across stubs in
the network. Positive degree-degree correlations (r > 0) are commonly interpreted
as degree assortativity, while negative correlations (r < 0) are interpreted as degree
disassortativity, but meaningful interpretations of r require that we first quantify
the possibility that degree-degree correlations are solely a consequence of the specific
degree sequence (see, for example, structural disassortativity described in [18]). In
this application of configuration models, we show that not only does the choice of
graph space dramatically shift the null distribution of degree-degree correlations, but
that it can even affect the sign of the expected value of the correlation and effectively
invert the conclusions drawn from hypothesis tests.

Degree assortativity is common in social networks, and collaboration networks
are commonly thought to be no exception, due to collaborations between extremely
productive researchers. Here we consider a collaboration network among computa-
tional geometry researchers, where vertices represent researchers and edges represent
coauthorship on a paper or book. The data come from the Computational Geometry
Database [72] and consist of 9,072 vertices and 22,577 edges. In a collaboration net-
work a c-author publication induces a c-clique in the graph, because every pair of the
¢ coauthors will share an edge, ¢(c — 1)/2 edges in total from a c-author publication.
A collaboration network is naturally a multigraph, since researchers often collaborate
on multiple papers together, but there are no self-loops by construction.

14Results in this section utilize code available at https://github.com/joelnish/double-edge-swap-

mcmc with convergence assessed via trace plots, autocorrelation, and effective sample size analyses.
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Fig. 7 Degree assortativity of the geometers collaboration network. Distributions of degree assor-
tativity corresponding to configuration models over various graph spaces are shown in gray,
and the degree assortativity of the geometers collaboration graph is shown in blue. The thick
red border around the vertex-labeled multigraph panel indicates the space chosen by answer-
ing the three guiding questions listed in section 1.5. For the spaces of multigraphs and loopy
multigraphs, the configuration models use the degree sequence of the multigraph collaboration
network, while for the spaces of simple graphs and loopy graphs, the configuration models
use the degree sequences of the simplified collaboration network. Due to the fact that degree
assortativity is a function of the graph adjacency matriz, distributions of assortativity over
simple graphs (top row) are identical for both stub- and vertex-labeled spaces.

In section 1.5 and Figure 2, we listed and considered three questions to guide the
choice of graph space, which we now answer in order. First, due to the construction of
the collaboration graph, the network does not allow self-loops. Second, geometers can
coauthor multiple papers, so the network allows for multiedges. Third, the crossing
of two edges in the multigraph is nonsensical—it is meaningless for author A’s first
collaboration with author B to be matched with author B’s second collaboration
with author A, and vice versa—and therefore this collaboration network should be
considered to be a vertex-labeled multigraph.

Although the collaboration network is a multigraph, a researcher might consider
“simplifying” the observed network into the space of simple graphs by removing all
duplicate edges between pairs of vertices, or equivalently thresholding all edge multi-
plicities at one. Although not applicable here, if the observed graph were to contain
self-loops, an analogous removal of self-loops would be necessary to “simplify” the
graph. Networks are sometimes simplified for convenience, stemming from a desire
to analyze a binary simple graph using familiar tools. Simplification may also have a
scientific basis, if, for example, the question of interest did not concern the number
of relationships between a pair of vertices but only whether or not any relationship
existed. Regardless, we demonstrate here that the decision to simplify can greatly
impact conclusions.

Figure 7 shows distributions of degree assortativity over the different configura-
tion models described in this paper, where the correlations of the empirical graphs
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(the original and the simplified) are shown as blue dashed lines, and the null dis-
tributions based on correctly sampled configuration models (section 2) are shown as
gray probability densities.'® Note immediately that many of the null distributions
in Figure 7 have almost no overlap in their distributional mass, illustrating two key
practical implications of null model selection. First, comparing the panels in each
column illustrates a direct impact of the inclusion or exclusion of self-loops and/or
multiedges. Second, comparing the panels in each row indicates that, although the
space of vertex-labeled graphs is nested within the space of stub-labeled graphs, the
frequency at which each vertex-labeled graph appears in the stub-labeled space is so
dramatically nonuniform that the ranges of degree-degree correlations under each null
distribution appear disjoint.

Most importantly, the null distribution differences shown in Figure 7 lead to
conflicting study conclusions. All four stub-labeled configuration models—which our
decision framework identifies as incorrect models—suggest that the observed collab-
oration graph is far more assortative than a random graph with the same degree
sequence. However, this conclusion is dramatically tempered when using the vertex-
labeled multigraph configuration model that was identified by answering the three
questions of section 1.5. Furthermore, if one incorrectly allowed self-loops and sam-
pled the space of vertex-labeled loopy multigraphs, one might erroneously conclude
that the collaboration network was slightly disassortative. The dramatic variation
of degree-degree correlations among null models, shown in Figure 7, highlights the
importance of correctly choosing a graph space and avoiding the default null model
of stub-labeled loopy multigraphs associated with straightforward stub-matching.

5.2. Trait Assortativity in a Barn Swallow Interaction Network. Trait assor-
tativity measures the extent to which pairs of connected vertices tend to have similar
scalar-valued traits. This pairwise correlation is calculated using the same formula
as degree assortativity in (5), but with degrees replaced with trait values [105, 106].
As with degree assortativity, measurements of trait assortativity provide clues as
to how particular traits are related to the arrangement of a network’s edges. And
again, as with degree assortativity, large or small values of trait assortativity are un-
interpretable without first understanding the distribution of values which might be
observed by random chance. In this application of configuration models, we show
once more that scientific conclusions are highly sensitive to the graph space chosen
as a null model, applying the methods of this paper to a multigraph of interactions
among barn swallows and a trait that quantifies the birds’ plumage color.

Past studies have shown that plumage color of the Colorado barn swallow ( Hirundo
rustica erythrogaster) is associated with reproductive success [120], but it is unknown
if this is due to genetic incompatibility between birds of different colors or whether
it is due to the preferential mixing of birds by color. To investigate whether there is
evidence that swallows preferentially interact with other swallows of similar color, we
consider network and trait data describing a population of 17 Colorado barn swallows
collected during the 2014 breeding season [86]. Each vertex in the network represents a
swallow, and each edge represents an interaction: an interaction was recorded between
bird pairs whenever their proximity tags registered a close encounter, with interac-
tions aggregated over 15 hours and measured across three days [85, 86]. Researchers
also recorded the color of each bird’s ventral plumage as a scalar, standardizing colors

15 Although the space of loopy graphs is not necessarily connected under double edge swaps, it

can be shown to be connected for the degree sequence of this collaboration network, allowing the use
of Algorithm 2 or 3 from section 2; see [111] for details.
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Fig. 8 Color assortativity of the barn swallow interaction network. Null distributions of color assor-
tativity associated with the uniform distribution over simple graphs, stub-labeled multigraphs,
and vertex-labeled multigraphs. The vertical blue line denotes the observed assortativity for
the stmplified (top row) and original (bottom row) barn swallow networks. The thick red bor-
der around the vertex-labeled multigraph panel indicates the space chosen by answering the
three guiding questions listed in section 1.5. Also depicted are the (upper-tailed) p-values,
i.e., the proportion of the null distribution assortativity values that are greater than the
respective observed assortativity. Due to the fact that trait assortativity is a function of
the graph adjacency matriz, distributions of assortativity over simple graphs (top row) are
identical for both stub- and vertez-labeled spaces.

between bird sexes. To determine whether birds of similar color interacted more than
one would expect by chance, while controlling for the fact that some birds have higher
interaction counts than others, we compare the observed assortativity by color to the
distribution of assortativity values for networks with identical degrees (i.e., interaction
counts), but with their interactions randomized.

We now apply the three questions of section 1.5 and Figure 2 to guide the choice
of null model graph space. First, due to the fact that a bird cannot interact with
itself, the network does not allow for self-loops. Second, because pairs of swallows
may interact multiple times during the data collection period, the network allows
for multiedges. Third, the crossing of two edges in the multigraph is nonsensical
due to their temporal ordering—it is meaningless for bird A’s first interaction to be
paired with bird B’s second interaction, and vice versa—and therefore this interaction
network is a vertex-labeled multigraph.

As in the previous application, a slight change in the scientific question could
change the graph space selected by the three questions. Specifically, if the researchers
wished to determine whether birds of similar color tended to ever interact with each
other, the network should be “simplified” by reducing all multiedges to single edges,
creating a vertex-labeled simple graph in which an edge is present between any pair of
swallows that interacted at any point during data collection. It is tempting to think
that this simplification will not be impactful—after all, only 34% of interacting bird
pairs interacted more than once, and only 11% interacted more than twice. However,
we now show that this is not the case.

Figure 8 shows color assortativity distributions for the simple graph configura-
tion model and for vertex-labeled and stub-labeled multigraph configuration models,
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as well as p-values for the corresponding one-sided hypothesis tests testing for posi-
tive color assortativity (i.e., whether swallows of similar color preferentially interact).
Thus, in each case the p-value is equal to the proportion of the null distribution
graphs with assortativity values greater than the observed value; small p-values are
indicative that the observed assortativity is noteworthy. Once more, the choice of
configuration model has a substantial and significant impact on the null distribu-
tions of color assortativity. An analysis based on simple graphs would conclude that
the presence or absence of interaction is significantly correlated with plumage color
(p = 0.001). However, the related analysis based on vertex-labeled multigraphs—the
analysis identified by the three questions from section 1.5—concludes that there is
no evidence that the number of interactions is significantly correlated with plumage
color (p = 0.852).

This application reveals another, more subtle aspect of choosing a graph space.
Due to the fact that both degree and trait assortativity are computed as a Pearson
correlation, it is often assumed that in the absence of correlations, i.e., when edges
are placed at random, r = 0 [105], and that r > 0 and r < 0 indicate assortative and
disassortative mixing patterns, respectively. However, as shown in Figures 7-8, zero is
the incorrect point for comparison; the distribution of color assortativity in Figure 8
is centered around zero for only one of the three graph spaces shown. Moreover, the
simplified network has a near-zero assortativity, indicated by the blue dashed line, yet
when compared with its null distribution from a simple configuration model, it is clear
that the interaction presence/absence (simple) network is significantly assortative by
plumage color. Thus, the choice of configuration model affects not only the scientific
hypothesis being tested and its conclusion, but also the baseline against which we
should anchor our intuition for correlations in networks.

5.3. Community Detection in a South Indian Village Social Support Net-
work. Community detection is a fundamental task of network science in which the
vertices are divided into groups (also called clusters or communities) based solely on
the patterns of edges. Often, communities are defined as groups of vertices that are
more densely connected to each other than one would expect by chance. Community
detection provides a coarse-grained summary of the network which enables further
study of its large-scale organization and may also reveal correlations between vertex
attributes and global network structure. Partitions of vertices produced by commu-
nity detection have been used in a wide variety of applications, including studies of
large-scale online social network structure [82], evolutionary constraints of malaria
parasites [79], and constructing experimental treatment groups for randomized con-
trolled trials on networks [133].

There are many approaches to community detection in networks [54], with one
of the most popular being modularity maximization [108]. Modularity measures the
strength of community structure in a network for a particular division of the vertices
into groups, and its maximization is based on the premise that communities are
groups of vertices that are more densely linked to each other than one would expect
by chance—that is, than one would expect, were the edges of the network arranged
randomly. More precisely, modularity is the average difference between the observed
network adjacency matrix A and its expectation E[A|k], under a configuration model
null model, across all within-group edges in the network. In particular, modularity
assumes a stub-labeled loopy multigraph configuration model for which the expected
number of edges between any two vertices ¢ and j, with degrees k; and k;, respectively,
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would be Ej™P[A|k] = kik;/2M.*® The widely used modularity @ is therefore
defined as

B ik
®) QQMZ_Z;<A” 201

) Stai9)

where A is the network adjacency matrix, g; is the community assignment of vertex
i, and ¢ is the Kronecker delta which restricts the sum to within-group edges.

The null model of modularity maximization, as it is written above, is the space
of stub-labeled loopy multigraphs, yet this space is not necessarily an appropriate
null model for many real-world networks. Modularity is often used to analyze simple
graphs, and this can lead to unexpected or undesirable community partitions [92, 22].
If a simple graph is sufficiently large, sufficiently sparse, and its degree sequence is
sufficiently bounded, then the expected number of edges between two vertices in the
space of simple graphs is asymptotically the same as the expectation in the space
of stub-labeled loopy multigraphs, i.e., E;[A;;|k] ~ k;k;/2M [107] (where s denotes
simple graphs). Thus, (6) will produce asymptotically correct values for simple graphs.
However, for finite simple graphs, we lack guarantees about the accuracy of (6).
The definitions and methods introduced in this paper now enable us to estimate
these expectations to arbitrary accuracy by first identifying the correct graph space
(section 1.5) and then sampling from it appropriately (section 2). We now show that
the choice of configuration model, and in particular the choice of a vertex-labeled
model, meaningfully changes the results of community detection.

For this investigation we analyzed a network of social support relationships col-
lected by Power [116] in a pair of South Indian villages. The number of edges between
two members of the villages corresponds to the number of different social supports
between them. Due to the differential meaning of each support, for a pair who share
m mutual supports, there are m possible ways these can be shared, not m!. Thus,
the dataset indicates that it belongs to the space of vertex-labeled multigraphs by
answering the questions of section 1.5: self-loops are nonsensical, multiedges exist,
and vertices are labeled but stubs are not.

In order to redefine modularity for an arbitrary graph null model, we rewrite the
expected number of edges between two vertices of degree k and k' as E[Cl i/]/ninp,
where ny is the number of vertices in the network with degree k and E[Cj k] is
the expected number of edges between all vertices of degrees k and k', respectively,
under the specified null model. We then rewrite modularity in generic form, based on
E[Ckx],

1 E[Cki,kj]
(7) Qgeneric - m ; <A’Lj - W) 5(91791) .

To change the null model, we need only change the distribution of graphs over which
E[Ck,x] is defined. For most graph spaces, an analytical expression for E[C} 5] is
unknown, but by using the MCMC techniques of section 2, we can estimate E[Cf /]
for any graph space discussed in this paper. Specifically, for each sample graph and

16Expectations over the Chung-Lu model [32] and expectations over the stub-labeled loopy multi-

graph configuration model are identical under a mild assumption on the skew of the degree distri-
bution, that max; ;j kik;j/> ,k¢ < 1. Thus, for stub-labeled loopy multigraphs, either model may
be used to produce the estimate k;k;/2M, but as we shall see, this is not the case for other graph
spaces, for which the Chung—Lu model cannot be used.
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Fig. 9 Choice of configuration model space impacts modularity maximization. Modularity maxi-
mization identified communities in a social multigraph of 782 vertices under two configura-
tion null models: stub-labeled loopy multigraphs (equation (6)) and vertex-labeled multigraphs
(equation (7)). (a) Nonuniform differences between the two null model matrices are colored
as indicated; white space indicates that there were zero vertices of degree k. (b) Results of
modularity mazimization by deterministic local search (see text), starting from identical ini-
tial state but using the two different null models, differ for the vast magority of initial states
and number of communities K, except the case of K = 2 communities for which 88% agreed.
(¢) Distributions of NMI, which measures similarity of partitions, show differences between
the partitions found using the two null models.

for all degrees k and k' in the degree sequence, we tally the number of edges between
vertices of degrees k and k' and then average these counts over all samples to estimate
E[Ck’k/}.

Figure 9(a) shows the nonuniform differences between E[C}, 1] for the stub-labeled
loopy multigraph and the vertex-labeled multigraph. In particular, edges between
vertices with more disparate degrees are more common under the standard stub-
labeled loopy multigraph space than the vertex-labeled multigraph space. As a result,
the vertex-labeled multigraph modularity function favors grouping connected vertices
with differing degrees more than the stub-labeled loopy multigraph modularity func-
tion. The vertex-labeled multigraph null model meaningfully changes the landscape
of the modularity objective function, which we demonstrate by studying the behavior
of two different modularity maximizing algorithms.

The first algorithm, based on the Kernighan—Lin algorithm, begins with a ran-
dom partition of the network’s vertices into a fixed number of communities. Then a
deterministic local search proceeds by sequentially proposing to move each vertex into
each of the other communities. The proposal that most increases or least decreases
modularity is accepted and a single full iteration is completed when every vertex has
been forced to moved exactly once. The highest modularity partition from one it-
eration is then used to seed the next iteration, and the algorithm exits when a full
iteration passes with no improvement.

For our investigation we recorded the final partition returned by the algorithm
for K communities, where K = 2,3,...,10, beginning from 100 random initial par-
titions and using (6) as the objective function. Next, starting from the same 100
initial partitions, we recorded the final partitions using (7) as the objective function.
The two objective functions produced different final partitions from the same initial
partitions in a vast majority of cases for K > 2, as shown in Figure 9(b), and these
differences were substantial, as indicated by a normalized mutual information (NMI)
in Figure 9(c) substantially below 1. Additionally, we tested whether the locally max-
imum modularity partitions of one objective function were also local maxima of the
other function, and found that between 9% and 19% were not, indicating that the
two null models are in disagreement about the locations of locally optimal partitions.
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The second modularity maximization algorithm considered is a fully deterministic
greedy algorithm that begins with each vertex in a community of its own. Then, at
each step of the algorithm there is a proposal to merge every possible pair of commu-
nities, and the merger that most increases modularity is chosen [108]. This process
is repeated sequentially until the vertices are all merged into a single community.
From the resulting sequence of partitions and modularity values, we may either select
the partition with the highest modularity score or select the partition with a desired
number of communities.

In our investigation of the village social network using this greedy algorithm, the
highest modularity partition using both (6) and (7) had ten communities. These two
maximum modularity partitions were identical for both null models, yet partitions
were identical at only 43% (335 of 782) of the agglomerative steps. Thus, while
a majority of the algorithm’s agglomerative choices differed by null model, a large
fraction of partitions remained the same, and both models produced the same optimal
partition with ten communities.

Together, these tests show that modularity maximization, a community detection
method based on a configuration model, is sensitive to the particular configuration
model used in (7). While other algorithms for modularity-based community detection
may explore the modularity surfaces using different means, the surfaces themselves
are nevertheless distinct. In order to preserve interpretability of modularity maxi-
mization’s results, practitioners should choose the correct graph space from which the
observed network is plausibly drawn.

6. Conclusions. Random graphs with fixed degree sequences appear across an
enormous number of mathematical and scientific domains, and, until this point, uni-
form distributions of such graphs have commonly been called the configuration model.
In this paper we showed that the concept of a random graph with a fixed degree
sequence can be applied to eight overlapping, yet often meaningfully different graph
spaces. We introduced three questions in section 1.5 regarding the presence or absence
of self-loops, multiedges, and stub labels, which can be used along with contextual
knowledge of a real-world network to decide upon the most appropriate graph space.

Three applications in section 5 highlighted the particularly important distinction
between stub-labeled and vertex-labeled spaces. In particular, the use of a stub-
labeled configuration model in place of its vertex-labeled counterpart inverted the
conclusions of degree-correlation hypothesis tests and changed the optimization land-
scape for community detection. Simply put, stub- and vertex-labeled spaces are not
interchangeable. Simple and nonsimple configuration models are not interchangeable
either. Although there are widely known asymptotic conditions under which the space
of stub-labeled loopy multigraphs contains few graphs with self-loops or multiedges
[102], many graphs analyzed in practical contexts are simply too small or too dense
to lean on these asymptotic results.

As part of our work, we presented three Markov chain Monte Carlo sampling
algorithms and proved that they can be used to generate graphs uniformly from the
eight graph spaces discussed. To that end, pseudocode and Python implementations
are provided, as used in the three applications of section 5. However, as with most
algorithms, there are tradeoffs. While these MCMC approaches are proven to uni-
formly sample from the desired graph space, rigorous mixing time bounds have not
been established, and we look forward to future mixing time investigations.

Throughout this paper we have discussed and reviewed the wide and disparate
history of configuration models and their sampling techniques, drawing on literature
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from sociology, ecology, combinatorics, statistics, and physics. Many results regarding
configuration models have been discovered multiple times, in part due to the deep and
scattered literature, and in part due to the fact that there exist various names given
to the same set of models and yet one name given to multiple different models. It is
therefore our hope that the results and summaries in this paper help to clarify and
refine the study of configuration models, their graph spaces, and their applications.
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