
 1

Large-scale structures in networks:

Hidden communities and latent hierarchies

May 27, 2019

NetSci

Daniel Larremore 
Assistant Professor 

Dept. of Computer Science  
& BioFrontiers Institute

daniel.larremore@colorado.edu

@danlarremore



 2

PDF of slides available 
http://danlarremore.com/CommunityDetection_and_Ranking_Larremore_2019.pdf

Goals for this talk: 
1. Why do we look for large-scale structure? 🤔 
2. How do we find communities and hierarchies? 🧐 
3. Where can we read more details? 📚
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Simplicity is a great virtue but it requires hard work to achieve it and education 
to appreciate it. And to make matters worse: complexity sells better.  

E. W. Dijkstra
We can interpret this in two ways: 
The Cynic: Pictures of networks can be really cool but  

our goal is to do good science, not make pretty pictures. 
The Scientist: The most beautiful science is when we  

correctly simplify a complex system. 



What do we mean by “large-scale structure” ?
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Structure is what makes data different from noise.  
It’s what makes a network different from a random graph.

We define these large-scale structures—models, really—to compress complex networks.

Therefore, understanding what the network means requires that we identify key structures. 

Searching for large-scale structures in a network reflects a belief that in all the complexity there are 
patterns that make the network less complicated. 

Networks are often too large and complex to be adequately summarized by a few scalars, like the 
number of nodes, the number of edges, or the mean degree.  

However, they are also often too large and complex to be analyzed without some kind of simplification!

I first heard “structure is what makes data different from noise” in a lecture by Aaron Clauset.



Goal: understanding, not a list of parts and dimensions
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Finding large-scale structures 
is the same as anything else: 
  
We want a simplified model of 
something very complicated.  

We want to know what the 
important pieces are,  
and how they fit together. 

Adapted from a similar slide from Aaron Clauset.



Many uses for models of large-scale structure
Treat the network like a system:


Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression. 

Treat the network like a means to an end; an intermediate data structure:

Useful division. Need groups so that we can assign treatments in an A/B test. 
Simplification. Downstream regression model needs ranks or groups.
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Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression.

Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type.

intuition: compare this list with the list you would write for regression
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Community structure



Homophily & assortative mixing
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Assortativity coefficient r measures 
extent of homophily.

like links with like

Newman, Phys. Rev. E 67, 026126 (2003). 



Homophily & assortative mixing
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Assortativity coefficient r measures 
extent of homophily. 

Three types: 
scalar attributes 
vertex degrees 
categorical variables

like links with like

~cj~ci

vertex attributes

Newman, Phys. Rev. E 67, 026126 (2003). 



Homophily & assortative mixing
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We write the correlation of categories 
across edges this way, and call it Q. 

Principle: How many more edges are 
there between nodes with the same 
label, than we’d expect at random?

like links with like

Q =
1

2m ∑
ij (Aij −

kikj

2m ) δbi,bj

# actual edges 
i↔j

# edges if there were 
no correlations 

i↔j
–∑

ij
( )

only if i,j have  
the same label



Practice makes the master

 11http://danlarremore.com/5352/csci5352_2018_L5.pdf

Q =
X

r

err � a2r
Equivalent form: 

ers is the fraction of edges 
connecting labels r and s

http://danlarremore.com/5352/csci5352_2018_L5.pdf


Modularity
Modularity is easily the most popular method for community detection. But why? 

Why is this more powerful than simply a measure of correlation over node labels?

 12Girvan & Newman, 2002. Community structure in social and biological networks. PNAS 99, 2002.

😱

😱



Key: let’s reverse our thinking of what Q does
Don’t use Q to compute correlation of some given labels. 

Instead, experiment with the labels and see how you can maximize Q!
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Now, we have a computer science problem: 
how do you search the space of partitions? 

(This space is really big!)

How would you do it? 🧐



People like modularity. Why?
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• Intuitive 
• Works for weighted and unweighted networks.  
• Corresponds to our social network ideas of what (cohesive) communities are.

• Automatically choose k, the number of groups.  
• Rapid approximate solutions.  
• Follows the usual methods trajectory: idea, demonstration, optimization. 

• Fun customizations: 
• Resolution parameter to “zoom in” and “zoom out.” 
• Find the clusters. Then cluster the clusters. Then cluster those clusters… 
• Directed. Bipartite.

modularity for directed networks modularity with a resolution parameter



Why aren’t we done here?
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Physicists like to minimize things because rocks fall. 
— Cris Moore

We can always maximize Q to find a partition, but is it meaningful?



Fooled by “structure” in totally random networks
As it turns out, you can find high-modularity partitions in random networks. 
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Structure is what makes data different from noise.  
It’s what makes a network different from a random graph.

We prefer that our methods fail gracefully, and tell us when they fail. (like R2) 
[alternative perspective: maybe you want to find clusters in randomness?]

Guimera, Sales-Pardo, Amaral. "Modularity from fluctuations in random graphs and complex networks." Physical Review E 70.2 (2004): 025101.



Modularity: degeneracy and strange behavior
Lots of different but nearly-as-good partitions.  
The optimization landscape is degenerate.

 17Good, de Montjoye, Clauset. Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010).

Unintuitive behavior: find the communities 
in a chain of cliques and you get pairs of 
cliques…not the cliques themselves!



Q is restricted to assortative community structure
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The zoo of possible structures is diverse and interesting! 
Build intuition: what do these networks look like?

Assortative Disassortative Ordered Core-periphery



Beyond assortativity: block models
What do these have in common?

 19

p

p

p

p

Assortative

b

d

b

d

a

c

c

aa

a

e

e

Disassortative

p

p

p

pq

q

q

q

q

q

Ordered

z

x x

yy

y x

x

x

Core-periphery

Nodes are in groups with other nodes that connect to other groups in similar ways. 

Key idea: all nodes in a group are stochastically equivalent. 



Generative model approach
Generate the structure you wish to infer.
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We like generative models because they open the door to inference:

GM + parameters Data
stochastic 

draw

GM + parameters Data
inference

In other words: let’s write down a recipe for generating block structure. % &



The stochastic block model
Assign each node to one of B blocks. 

Let the probability that two nodes connect depend only on their blocks: 

Then we can choose the matrix     to have whatever structure we want!

 21Assortative Disassortative Ordered Core-periphery

GM + parameters Data
stochastic 

draw



SBM inference
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GM + parameters Data
inference

no more math on slides 😭 
but the derivations are beautifully described in:
Karrer, Newman. Stochastic blockmodels and community structure in networks.  
Phys. Rev. E 83, 016107 (2011).

Summary: 
1. Write down the SBM likelihood function for a fixed number of blocks B. 
2. Maximize the likelihood with respect to matrix parameters. 
3. Search over divisions into B blocks to find the best blocks. 

example matrix of parameters, B=4

Recommended reading!

There’s a subtlety here, which I haven’t written out, called degree correction. In practice, we also take into account the 
exact degree sequence. This allows us to find community structure while controlling for variability in the nodes’ degrees.



The problem with parameterized models…

You have to choose their parameters! 

How should we choose B, the number of blocks?  

Hint: we can’t simply maximize the likelihood over all choices of B: 
Why? If we place each node in its own community, we can get Likelihood=1. 
[Actually, this wouldn’t model the data at all: it would memorize it.] 
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We need a way to penalize the complexity of the model. Any ideas?



Description length & Occam’s razor
The Description Length of a message is:  
# bits required to send the compressed message + # bits in encoding scheme.
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Occam’s razor: among all possible explanation for a phenomenon, choose the 
simplest one. Therefore, choose the model with Minimum Description Length (MDL).

The stochastic block model also has a Description Length:

description length = entropy of data, given the model (fit SBM) + entropy of model

Consider the original problem:  
what happens to this equation when I increase the number of blocks B?

Peixoto. Parsimonious Module Inference in Large Networks. Phys. Rev. Lett. 110, 148701 (2013).
Peixoto. Entropy of stochastic blockmodel ensembles. Phys. Rev. E 85, 056122 (2012).



MDL criterion suggests an algorithm:
Fit the SBM with 1 block and record the Description Length. 
Fit the SBM with 2 blocks and record the Description Length. 
… 
when the Description Length starts to increase, go back one step and stop.* 

 25
*Actually, use something clever, like Golden Ratio / Fibonacci search 
Press et al. Numerical Recipes: The Art of Scientific Computing, (Cambridge University Press, Cambridge, England, 2007), 3rd ed. 

Bonus: what happens if I try to trick you and give you a random network with no blocks?

MDL approach will tell you: your network is a random network with one block.



So how does the search part work?

Markov-chain Monte Carlo: 

Wander from one partition to another partition by proposing to take a node from 
one group and move it to a new group. 

If this move increases the likelihood score, then keep the move. 
If this move decreases the likelihood score, then maybe keep it, depending 
on how bad it is. 
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Thorough details in the documentation for graph-tool. https://graph-tool.skewed.de

https://graph-tool.skewed.de


Does it work?
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Division in political blog network. ()

Adamic & Glance mapped the link 
structure of USA political blogs in 2004.

Karrer & Newman used this network 
as a testbed for community detection 
using the SBM.

What does this say about the 
process that may be generating (or 
pruning?) the links in this network?

Adamic & Glance KDD 2005. https://dl.acm.org/citation.cfm?id=1134277
Karrer & Newman PRE 2011. https://arxiv.org/abs/1008.3926

https://dl.acm.org/citation.cfm?id=1134277
https://arxiv.org/abs/1008.3926


Does it work?

 28Larremore, Clauset, Jacobs, Physical Review E, 2014.

Genes & substrings, 
malaria immune evasion

In bipartite networks, we know the 
major split in the data already.

Larremore, Clauset, Buckee, PLoS Comp Biol, 2013.

Methodologically, we found that 
exploiting this split improved speed and 
quality of the partitions we found.

Scientifically, this opened new directions 
to analyze (and understand) evolutionary 
constraints on malaria parasites.

Code by Tzu-Chi Yen https://github.com/junipertcy/det_k_bisbm.  
Figure http://danlarremore.com/webweb/

https://github.com/junipertcy/det_k_bisbm
http://danlarremore.com/webweb/


Does it work?

 29Larremore, Clauset, Jacobs, Physical Review E, 2014.

Genes & substrings, 
malaria immune evasion

In bipartite networks, we know the 
major split in the data already.

Larremore, Clauset, Buckee, PLoS Comp Biol, 2013.

Methodologically, we found that 
exploiting this split improved speed and 
quality of the partitions we found.

Scientifically, this opened new directions 
to analyze (and understand) evolutionary 
constraints on malaria parasites.



Does it work?
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C. elegans neuronal network.

297 neurons, completely mapped. 
The neurons do not fire action 
potentials, and do not express 
any voltage-gated ion channels.

Note the different layout…
C. elegans 1st multicellular genome.1998. http://science.sciencemag.org/content/282/5396/2012.    
Bacteriophage 1st genome: https://www.nature.com/articles/265687a0

http://science.sciencemag.org/content/282/5396/2012
https://www.nature.com/articles/265687a0


A good alternative? cross-validation via link prediction

Select B by choosing the model that makes the best predictions. 

Perform k-fold cross validation: 
1. Divide the edges of the network into k groups, called folds.  
2. Hide one of the folds (the “test set”) 
3. Fit each SBM to the remaining k-1 folds (the “training set”), varying B. 
4. Test the ability of the fitted models to predict the hidden test data. 
5. Switch which fold is “test” and which are “training” and repeat. 

Choose the B with the highest performance on link prediction over all k folds. 

 31



Advanced topic 1: hierarchical communities
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Don’t minimize the description length 
of the data and the model… 

Model the model as well. Why?

If we compress the model, we can 
afford a bigger model, but a lower 
overall cost. 

Except now, the description length 
includes two models. Or three? Or?

Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014).



Advanced topic 1: hierarchical communities

 33Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014).



Advanced topic 2: mixed-membership

 34Ball, B., Karrer, B. & Newman, M. E. J. Efficient and principled method for detecting communities in networks. Phys. Rev. E 84, 036103 (2011).

Nodes are often pulled between 
communities. (Or in real social systems, 
individuals belong to multiple groups.)

“Mixed membership” models allow for 
that, by assigning links to groups, and 
assigning nodes to groups based on 
their links.



Advanced Topic 3: multilayer networks

In single-layer networks: 
nodes and edges

In multilayer networks: 
nodes, edges, and layers

edges: different types of relationships 
layers: each layer contains all edges of one type 
nodes: same nodes in each layer



Multilayer network: air travel

traditional: booking with airline disrupted: booking with kayak, expedia, etc



Multilayer network: community structure?

three key approaches:

1. Non-generative: modularity maximization; vary inter-layer strength.

1 is preferred if nodes appear/disappear over time. 
2,3 are preferred to solve the layer interdependence problem

Mucha et al Science 2010. http://science.sciencemag.org/content/328/5980/876

2. Generative: SBM for each layer, but jointly model layers whenever their  
structures are sufficiently similar.

Peixoto, T. P. Phys. Rev. E 92, 042807–15 (2015).

3. Generative: SBM for each layer, and model all layers simultaneously with same 
community structure, but allow relationships between groups to vary. 

De Bacco Power Larremore Moore. Phys. Rev. E 95, 1981–10 (2017).



Layer interdependence
Are layers structurally similar? Complementary? Neither?
“Learn” a SBM from m layers; try to predict links of m+1.
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"Community detection, link prediction, and layer interdependence in multilayer networks” Physical Review E 95 042317

more layers = better performance 
(layer structure generated by same social mech.)
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cannot predict the structure of one region in the immune-evasion genes  
by using other regions; layers are unrelated!



Advanced topic 4: metadata+communities
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How well do metadata explain the network structure? “BESTest”
Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full

How do metadata relate to network structure? “neoSBM”
Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full

Can we use metadata to guide community detection? “metadata assisted SBM”
Newman, Clauset. Nature communications 7 (2016). https://www.nature.com/ncomms/2016/160616/ncomms11863/full/ncomms11863.html

Can we find patterns in the metadata itself? Apply multilayer SBM
Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014).

What are metadata?



Blockmodel entropy significance test

How well do the metadata explain the network?

randomly assigned metadata  
→ model gives no explanation, high H  

metadata correlated with communities 
→ model gives good explanation, low H  

1. Divide the network G into groups according to metadata labels M.  

2. Fit the maximum likelihood parameters of an a posteriori SBM and 
compute the entropy H(G,M) of the corresponding ensemble.  

3. Compare the entropy of this SBM ensemble to distribution of 
entropies from SBMs partitioned using shuffled metadata M.  

p-value = Pr[H(G,{M})) ≤ H(G,M)]_

_

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full


Multiple network layers; multiple metadata attributes 

Multiple sets of metadata significantly explain multiple networks. 
[Should one particular set of metadata be ground truth?]

model = SBM

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full


BESTest accommodates many models of group structure

Malaria parasites do not have a strong strain structure, with implications for 
diversifying selection among parasites.

DBL, Clauset, A. & Buckee, C. O. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes. PLoS Comp Bio 9, e1003268 (2013).

A negative result: parasite origin is irrelevant to genetic substring-sharing. 

metadata = parasite origin

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full


neoSBM

Choose between the SBM partition and the metadata partition.

Log likelihood with parameterized prior:  
θ is the parameter of a Bernoulli prior on whether the node is free to choose its own 
community or held fixed at its metadata label.

As θ increases, the cost of freeing a node decreases. 

Varying θ in the unit interval explores the space of partitions between M and C.

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full
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Plant two different kinds of structure in a network

SBM with 8 groups and  
two interesting 4-group partitions:
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Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full
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The neoSBM identifies four interesting partitions

metadata SBM

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.full
https://piratepeel.github.io/code.html

http://advances.sciencemag.org/content/3/5/e1602548.full


The prior parameter changes the likelihood surface



Other things to know about 1: “The Louvain Method”
If your network is really big. (Millions of nodes, Billions of edges) 

Take ClausetNewmanMoore’s approach for greedy Q maximization and find small 
groups.   Run the code again on those groups… And again…

 48https://en.wikipedia.org/wiki/Louvain_Modularity           https://arxiv.org/pdf/0803.0476.pdf

Advantage: fast! big! 🚀 

Disadvantage: inherits the 
assumptions of modularity. 
(clustering vs modeling) 

6K citations. People like it!

https://en.wikipedia.org/wiki/Louvain_Modularity
https://arxiv.org/pdf/0803.0476.pdf


Other things to know about 2: InfoMap
Imagine a random walker on a network. 

A description of her walk can be 
compressed if the network has regions in 
which the random walker tends to stay for 
a long time.  

Minimizing the “map equation” over all 
possible network partitions is the same as 
finding the best codebook.

 49http://www.mapequation.org/code.html
http://www.mapequation.org/apps/MapDemo.html 🤩

http://www.mapequation.org/code.html
http://www.mapequation.org/apps/MapDemo.html


Outlook for community detection

There is no multiple regression for networks.  
“Controlling for C, how important is X in predicting Y?” 

Tradeoffs between general and bespoke methods are still being explored.

Outside of SBM, Modularity, Louvain, Infomap, it’s a wild west. 

Methodologists are keen to be challenged by new problem types. 

New scientific questions inspire new methods.

 50

Simply put, we have amazingly powerful tools that did not exist 15 years ago. 

Many are principled, statistically rigorous, and we learn more all the time. Those 
that aren’t statistically rigorous are really, really fast. 



 51



Rankings and linear hierarchies



Many uses for the same techniques. cf regression
Treat the network like a system:


Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression. 

Treat the network like a means to an end; an intermediate data structure:

Useful division. Need ranking so that we can assign experimental treatments. 
Simplification. Downstream regression model needs ranks or groups.
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Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression.

Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type.



The idea of rankings—pervasive!
Assumptions:  

1. Competitors have some intrinsic quality (or vector of qualities). 
2. Interactions can (stochastically) reveal differences in qualities.  
3. Competitions are pair-wise. (Lee Sedol vs. AlphaGo; Astros vs. Dodgers)

In other words: outcomes are generated by a stochastic process, which is 
some function of the positions of the competitors. 
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Systems of endorsement

MIT

Stanford

UC Berkeley

Carnegie Mellon

Cornell

Washington

Caltech

Harvard

Yale
Princeton
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3

Assumptions:  
1. Endorsers have some intrinsic quality. 
2. Interactions can reveal differences in qualities.  
3. Endorsements are pair-wise.

Clauset, Arbesman, Larremore. Science Advances 1, e1400005 (2015).
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Tenpatti Ranked Community & Caste

Hindu Yaathavar
Pallar
Arundhathiyar
Agamudaiyaan
Aasaari
Naayakkar
RC Yaathavar
Kallar
Kulaalar

Caste

Systems of endorsement

Latent position can be revealed by 
dominance or endorsement interactions.

Data: Power. Nature Human Behaviour 1, 0057 (2017)Figure: Larremore, Hébert-Dufresne, Power. Draft.



The setup: suppose we have a directed network.
Its adjacency matrix is A .
Aij = Ai→j means i beat j or i was endorsed by j

The problem: Rank the nodes.

Alternative view: there might be no network here. In some 
cases we’re just seeing a network in pairwise comparison data 
because networks are a convenient data structure.
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Alternative problem: Which items should be compared next in order to 
most/best resolve our estimate of the ranks? (sequential tournament design)



Embeddings vs Orderings

Ordering place the nodes in order:   
1, 2, 3, … 

Embedding assigns a position to each node: 
1, 1.2, 7, 20, 21, 21.2, …

Which one should I use? 
> Depends on the use case.  

> Is it possible for two nodes to occupy the same rank or position? If so, an 
embedding is more appropriate. Also better when meaning of 1-rank Δ varies. 

> Consider that you can always go from an embedding to an ordering, if you 
have a rule for breaking ties. 
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1 2 3 4 5 6

-1 1



Win-Loss is not satisfactory: schedule matters
Beating the grandmaster counts for more than beating a novice. 

Win and loss tallies don’t take this “schedule difficulty” into account. Put differently, 
win-loss records leave information on the table.

One way to make use of this information: 
i beats j implies si > sj

Therefore if we have a whole list of outcomes, 
we can try to find a total ordering that breaks 
as few of these implications as possible.

number of times that i beat j.

1 100 200 300
1

100

200

300

minimum violation ranking: sort A.
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Win-Loss is not satisfactory: schedule matters
How do we find an ordering that minimizes the number of violations (or upsets) ?

Recipe (MCMC): 
1. Order the nodes randomly.  
2. Compute the number of violations. In expectation, this should be 50% of edges.

3. Pick two nodes at random and propose to swap their positions. 
4. Compute the number of violations in this scenario.

5. If #violations decreases or stays the same, keep the swap. Otherwise, reject. 
6. Repeat until….?

Notes: 
* The number of violations is non-increasing over time. 
* There may be no unique minimum. Consider this scenario: 
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1 100 200 300
1

100

200

300

Embeddings & Orderings 0: MVR & Agony

What if you allowed for ties and then 
ran Minimum Violation Ranking (MVR)?  
What would happen?
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* There is no guarantee of a unique minimizing ranking s. 
* Space of ordinal rankings has n! elements, requiring slow 

search algorithms (e.g. MCMC). 
* Ordinal. No ties. No interpretability of rank differences.

What are other premises on which 
we can base a ranking model?

minimum violation ranking: sort A.

MVR: uniform cost (1 per edge). 
Agony: generic cost function. 

for example, difference in ranks.

Gupte et al. Finding hierarchy in directed online social networks WWW (2011)



Embeddings and Orderings 1:  
Discrete choice models

Louis Leon Thurstone and Thelma Thurstone  63



Embeddings and Orderings 1: Discrete choice models

 64https://xkcd.com/883/

Instead of rating everything from 1 to 10, try paired comparisons.

Why? Consider: My 3 is not your 3. What is 1 and what is 10? 

Do you prefer i or j ?



Embeddings and Orderings 1: Discrete choice models
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Thurstone: items have quality distributions. When a person judges whether A is better 
than B they draw from A’s distribution and from B’s distribution and see which is higher. 

Thurstone modeled these as Gaussians.
P(A > B) = P(A − B > 0)

Difference of Gaussians is Gaussian. 

̂μAB = Φ−1 ( CA→B

CA→B + CB→A )
Where              is the inverse CDF of standard normal, a.k.a. the probit.  Φ−1(x)

Powerful idea: lots of pairwise comparisons = estimates of all the qualities! An embedding!
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Key: pairwise comparisons = directed network. i preferred to j = i → j

Finding the qualities of items from pairwise comparisons = Finding embedding of nodes.



Embeddings and Orderings 1: Discrete choice models
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Bradley-Terry & Luce: items have quality distributions. When a person judges whether 
A is better than B they draw from A’s and from B’s distribution and see which is higher. 

BTL 

P(A > B) =
πA

πA + πB

Or usually:

P(A > B) =
eμA/s

eμA/s + eμB/s
=

1
1 + e−(μA−μB)/s

Same idea; different distribution. (logit instead of probit; Gumbel instead of Gaussian)

Powerful idea: lots of pairwise comparisons = estimates of all the qualities! An embedding!



BTL avoids non-transitivities (aka rock-paper-scissors)

• 3 (or more) dice {A,B,C}  
• faces chosen so that they have  the property: 

• A>B more than half the time. 
• B>C more than half the time. 
• C>A more than half the time (?!)

https://en.wikipedia.org/wiki/Nontransitive_dice

A great gift for your favorite nerd’s desk! 
Go to the makerspace and laserbeam your own!
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Introducing: non-transitive dice!



Bradley-Terry-Luce

Pairwise ranking is really nice for ordering large sets of 
preferences too, and this model specifically models the 
probability that the preference will be for i over j.

Iterative algorithms exist. Needs a little regularization so 
the winningest winners don’t fly off to infinity. 
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These methods embed items or players in a 1D space. 
• Provably avoids non-transitive properties 
• Great when lots of data per interaction.



http://mayagupta.org/publications/PairedComparisonTutorialTsukidaGupta.pdf
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https://web.stanford.edu/~jugander/papers/nips16-pcmc-slides.pdf

Introductory tutorial:

Discrete choice today:

Embeddings and Orderings 1: Discrete choice models

http://mayagupta.org/publications/PairedComparisonTutorialTsukidaGupta.pdf
https://web.stanford.edu/~jugander/papers/nips16-pcmc-slides.pdf


Embeddings & Orderings 2: SpringRank
 71



Each directed edge = directed spring

,

1 2 3

1

2

3

4

en
er

gy
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How much energy is this system of springs?

H(s) =
1

2

NX

i,j=1

Aij(si � sj � 1)2
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Relax and let the springs decide the ranks

SpringRank Hamiltonian = energy of the system, given the node positions s.

Because the springs are linear, the potential is quadratic.

The SR Hamiltonian is convex in s.

The solution is unique…up to an additive constant. (Why?)

H(s) =
1

2

NX

i,j=1

Aij(si � sj � 1)2
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We know a priori that the matrix on the left is singular: translational invariance of H(s).

Derivatives work out nicely

[if s is a solution, then s + k is a solution for any constant k;  eigenvalue 0, eigenvector 1]

0 =
@H

@si
=

X

j

Aij(si � sj � 1)�Aji(sj � si � 1)

Rewrite as a linear algebra problem. 
⇥
Dout +Din �

�
A+AT

�⇤
s⇤ =

⇥
Dout �Din

⇤
1

Uniqueness: Set s1=0, min(s)=0, or mean(s)=0. Or use a pseudoinverse. Or regularize.

Notice: the matrix on the left is the graph Laplacian of the undirected network.
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It works! computer science  
faculty hiring network

Real networks tend to be sparse… 
our linear algebra problem is sparse… 

we can use sparse iterative solvers… 
millions of edges in seconds. 

Even better: it’s a linear-Laplacian system. 
🚀 Near-linear-time (in |edges|) solutions.

Note that node positions can be clumpy,  
since this is an embedding.
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CS hiringparakeetsrural 
social 
support

risk: stopping at “ours is faster” + pretty pictures

 77E. Power E. Hobson A. Clauset



Cross validation: train on 80%, predict 20%
In a linear hierarchy the key quantity to predict is edge direction, given edge existence. 

If i and j were to face off, who would win?

I’ll give you undirected(A), and you predict directed(A).

Setup: learn s from 80% of A.  Then predict edge directions for remaining 20% of A.

SpringRank predicts edge direction based on the relative direction probabilities:
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Cross validation vs BTL: SR makes better predictions

50 independent trials of 5-fold cross validation (250 folds)

0.7 0.8

0.7

0.8

Alakapurum

SR 0.99
BTL 0.01

0.6 0.8 1

0.6

0.8

1
Parakeet G1

SR 0.71
BTL 0.29

0.85 0.9

0.85

0.9
Business

SR 0.67
BTL 0.33

0.86 0.9
BTL prediction accuracy a
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a

History

SR 0.98
BTL 0.02

0.7 0.75 0.8

0.7

0.75

0.8
NCAA Women

SR 0.94
BTL 0.06

0.7 0.8

0.7

0.8
NCAA Men

SR 0.76
BTL 0.24

Accuracy:

Goal: maximize the number of 
correctly predicted edge directions.
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Cross validation vs SyncRank: SR makes better predictions

50 independent trials of 5-fold cross validation (250 folds)

“One-bit” Accuracy:

Goal: maximize the number of 
correctly predicted edge directions. 0.7 0.75 0.8 0.85

0.7

0.75

0.8

0.85
NCAA Women

SpringRank 0.85
SyncRank   0.15

0.65 0.7 0.75 0.8 0.85

0.65

0.7

0.75

0.8

0.85
NCAA Men

SpringRank 0.87
SyncRank   0.13

SyncRank fraction correctly predicted games b
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am
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b

Higher ranked player always wins. 
• No probabilistic prediction. 
• Bad for gambling. 

 80



 81

Why/when would a model of springs make better predictions 
than a model of the choices themselves?🧐 



Embeddings and Orderings 3: PageRank
PageRank defines scalar rank recursively:  

important pages are those that are linked to by important pages. 
• Great at finding the top 3 but limited predictions available using the PageRank scores.
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Embeddings and Orderings 3: PageRank
We imagine a web surfer who choose a starting webpage at random.

What’s the probability that she’s at a particular page? That’s PageRank.

Jeremy Kun: http://www.infinitelooper.com/?v=K3pT0gTaDec&p=n

πji =
Aji

kj

define a transition matrix

pi =
1 − d

N
+ d∑

j

pjπji

write the equation

p = ( 1 − d
N ) 1 + dπTp

matrix-vector form

From that webpage, she looks at the links on the page, and either  
(a) clicks on a random link or  
(b) stops surfing; when she returns, she starts at a new random page.

Alternative: stationary distribution of random walk on the network + weak all-to-all links 
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http://www.infinitelooper.com/?v=K3pT0gTaDec&p=n


Ball, Newman. Network Science 1, 16-30 (2013)

Embeddings and Orderings 4: Ball & Newman
Generative model: 
Generate the patterns that you want to identify. 

Create N nodes. 
Assign each node an integer rank r, from 1 to N.

P(i ↔ j) = α(ri − rj)

P(i → j) = β(ri − rj)

A gaussian centered at 0

Fourier cosine series, keeping five terms & squaring to enforce 
nonnegativity, plus an additional Gaussian peak at the origin. 

IRL, not all friendships are reciprocated  😭 
So let’s generate undirected AND directed edges:

α(z) β(z) 
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Inferred parameters of people’s attachment preferences & ranks. 
• Identified the need to learn from reciprocated friendships. 
• Found that in AddHealth data, teens link to others of nearby 

social status.

Ball, Newman. Network Science 1, 16-30 (2013)

GM + parameters Data
inference

ranks

α
β
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12th grade

11th grade

10th grade

9th grade

8th grade

7th grade

Embeddings and Orderings 4: Ball & Newman



Embeddings and Orderings 5: Niche Models

Niche Models embed species in a latent 
space based on feeding preferences:  

most species feed from narrow range 
in a 1-dim. space (~body size). 

• Great for food webs. Inference 
models v slow for all but small 
networks.

Williams & Martinez. Nature 404.6774 (2000).  86

Want more? Jen Dunne, Cris Moore





Many uses for the same techniques. cf regression
Treat the network like a system:


Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression. 

Treat the network like a means to an end; an intermediate data structure:

Useful division. Need groups so that we can assign treatments in an A/B test. 
Simplification. Downstream regression model needs ranks or groups.
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Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type. 

Treat the network like an artifact:

Mechanisms. How did this network arise? What rules governed its assembly? 
Explanations. Coarse-graining or compression.

Treat the network like a system:

Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time). 
Interpolation. Identify missing links. 
Generalization. Nodes of this type are like others of the same type.
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PDF of slides available 
http://danlarremore.com/CommunityDetection_and_Ranking_Larremore_2019.pdf

Goals for this talk: 
1. Why do we look for large-scale structure? 🤔 
2. How do we find communities and hierarchies? 🧐 
3. Where can we read more details? 📚



Thank you
@danlarremore 

daniel.larremore@colorado.edu



Aside: the birth of null models & chance sociograms

 91Johan Ugander’s Post: https://jugander.wordpress.com/2014/08/07/computational-perspectives-on-large-scale-social-networks-a-brief-history/
The Book: http://www.asgpp.org/docs/wss/Book%20VI/index.html

Who shall survive? Moreno, 1936


Moreno wondered if there were 
structural explanations for why 
certain young girls were running 
away from the school, and thought 
that sociographic analysis might 
hold an answer. 

chance sociograms

SIAM Review: Configuring random graph models with fixed degree sequences. http://arxiv.org/abs/1608.00607

https://jugander.wordpress.com/2014/08/07/computational-perspectives-on-large-scale-social-networks-a-brief-history/
http://www.asgpp.org/docs/wss/Book%20VI/index.html
http://arxiv.org/abs/1608.00607


Aside:
Here is one of my favorite papers of all time:

 92http://proceedings.mlr.press/v27/luxburg12a/luxburg12a.pdf

http://proceedings.mlr.press/v27/luxburg12a/luxburg12a.pdf

