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Goals for this talk:
1. Why do we look for large-scale structure? &

2. How do we find communities and hierarchies? &)
3. Where can we read more details? &



Simplicity is a great virtue but it requires hard work to achieve it and education
to appreciate it. And to make matters worse: complexity sells better.
E. W. Dikstra

We can interpret this in two ways:
The Cynic: Pictures of networks can be really cool but

our goal is to do good science, not make pretty pictures.
The Scientist: The most beautiful science is when we

. correctly simplify a complex system.
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What do we mean by “large-scale structure”

Structure is what makes data different from noise.
It's what makes a network different from a random graph.

Networks are often too large and complex to be adequately summarized by a few scalars, like the
number of nodes, the number of edges, or the mean degree.

However, they are also often too large and complex to be analyzed without some kind of simplification!

Therefore, understanding what the network means requires that we identify key structures.

Searching for large-scale structures in a network reflects a belief that in all the complexity there are
patterns that make the network less complicated.

We define these large-scale structures—models, really—to compress complex networks.

| first heard “structure is what makes data different from noise” in a lecture by Aaron Clauset.



Goal: understanding, not a list of parts and dimensions

FINding large-scale structures
IS the same as anything else:
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We want a simplified model of
something very complicated.

VWe want to know what the

important pieces are,
and how they fit together.

Adapted from a similar slide from Aaron Clauset.



Many uses for models of large-scale structure

Treat the network like a system:
Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time).
Interpolation. [dentity missing links.
Generalization. Nodes of this type are like others of the same type.

Treat the network like an artifact:

Mechanisms. How did this network arise”? VWhat rules governed its assembly”?
Explanations. Coarse-graining or compression.

Useful division. Need groups so that we can assign treatments in an A/B test.
Simplification. Downstream regression model needs ranks or groups.

intuition: compare this list with the list you would write for regression



ommunity structure
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Homophily & assortative mixing

like links with like

Assortativity coefficient r measures
extent of homopnhily.

Newman, Phys. Rev. E 67, 026126 (2003).



Homophily & assortative mixing

like links with like

Assortativity coefficient r measures
extent of homopnhily.

Three types: “
scalar attributes
vertex degrees

categorical variables

vertex attributes

Newman, Phys. Rev. E 67, 026126 (2003).



Homophily & assortative mixing

like links with like

We write the correlation of categories
across edges this way, and call it Q.

Principle: How many more edges are
there between nodes with the same
label, than we’d expect at random®?

# actual edges # edges |f there were
s —  No correlations

]
]

] only if i,j have
the same label

10



Practice makes the master B ) Ob..b;
Equivalent form:
“— e is the fraction of edges
connecting labels rand s

labeling 1 | red  blue labeling 2 | red blue
red [ 3/7 1/14 red | 4/7 2/14
blue | 1/14 3/7 blue | 2/14 1/7

Q1 =5/14 = 0.357 Q = 6/49 = 0.122

http://danlarremore.com/5352/csci5352 2018 L5.pdf 11



http://danlarremore.com/5352/csci5352_2018_L5.pdf

Modularity

Modularity is easily the most popular method for community detection. But why”?
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Why is this more powerful than simply a measure of correlation over node labels?

Community structure in social and biological networks

M Girvan, MEJ Newman - Proceedings of the national ..., 2002 - National Acad Sciences

A number of recent studies have focused on the statistical properties of networked systems
such as social networks and the Worldwide Web. Researchers have concentrated

particularly on a few properties that seem to be common to many networks: the small-world
property, power-law degree distributions, and network transitivity. In this article, we highlight
another property that is found in many networks, the property of community structure, in

which network nodes are jotogether in tightly knit groups, between which there are only ...

v Y9 Cited by 12341 ited articles All 40 versions

Finding and evaluating community structure in networks

MEJ Newman, M Girvan - Physical review E, 2004 - APS

We propose and study a set of algorithms for discovering community structure in networks—

natural divisions of network nodes into densely connected subgroups. Our algorithms all

share two definitive features: first, they involve iterative removal of edges from the network to

split it into communities, the edges removed being identified using any one of a number of

possible “betweenness” measures, and second, these measures are, crucially, recalculated

after each removal. We alsose a measure for the strength of the community structure ...
4

v Y9 Cited by 11238 ed articles All 38 versions

Girvan & Newman, 2002. Community structure in social and biological networks. PNAS 99, 2002.



Key: let’s reverse our thinking of what Q does

Don't use Q to compute correlation of some given labels.

Instead, experiment with the labels and see how you can maximize Q!

Now, we have a computer science problem:
how do you search the space of partitions?

(This space is really big!)

How would you do it? &)

13



People like modularity. Why? @ = — > (Az-j “") Obi b,

e [Ntuitive
e \orks for weighted and unweighted networks.,
e Corresponds to our social network ideas of what (cohesive) communities are.,

o Automatically choose k, the number of groups.
e Rapid approximate solutions.
e Hollows the usual methods trajectory: idea, demonstration, optimization.

e FUN customizations:

Resolution parameter to "zoom In” and “zoom out.”
-INd the clusters. Then cluster the clusters. Then cluster those clusters. ..

Directed. Bipartite.

1 joubign 1 kik;
—_— — Al - J (S 2 P —_ — AL / i 5 o B
m Z ( & m ) 24203 ¢ 2m Z ( ;) 2m ) 24103

] ij
modularity for directed networks modularity with a resolution parameter

14



Why aren’t we done here”

Physicists like to minimize things because rocks fall.
— Cris Moore

We can always maximize Q to find a partition, but is it meaningful?

15



Fooled by “structure” in totally random networks

As it turns out, you can find high-modularity partitions in random networks.

Structure is what makes data different from noise.
[t's what makes a network different from a random graph.
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We prefer that our methods fail gracefully, and tell us when they fail. (like R2)
[alternative perspective: maybe you want to find clusters in randomness”?)|

Guimera, Sales-Pardo, Amaral. "Modularity from fluctuations in random graphs and complex networks." Physical Review E 70.2 (2004): 025101.
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Modularity: degeneracy and strange behavior

Lots of different but nearly-as-good partitions.
The optimization landscape Is degenerate.

Unintuitive behavior: find the communities
N a chain of cligues and you get pairs of
cligues...not the cligues themselves!
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Good, de Montjoye, Clauset. Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010).
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Q is restricted to assortative community structure

The zoo of possible structures is diverse and interesting!
Build intuition: what do these networks look like?

Assortative Disassortative Ordered Core-periphery

18



Beyond assortativity: block models

What do these have in common??

Assortative Disassortative Ordered Core-periphery
Nodes are in groups with other nodes that connect to other groups in similar ways.

Key Idea. all nodes in a group are stochastically equivalent.

19



Generative model approach

(Generate the structure you wish to infer.

We like generative models because they open the door to inference:

stochastic
draw

GM + parameters » Data

Inference
GM + parameters Data

In other words: let’s write down a recipe for generating block structure. @ &

20



stochastic
draw

The StOChaStiC b‘OCk mOde‘ GM + parameters » Data

ASSIgN each node 1o one of B blocks.
b;

Let the probabllity that two nodes connect depend only on thelr blocks:
P’I’(Af,;j‘bi, bj) — wbi,bj

Then we can choose the matrix w to have whatever structure we want!

Assortative Disassortative Ordered Core-periphery ,,



inference

SBM inference

Nno more math on slides @
but the derivations are beautifully described in:

Karrer, Newman. Stochastic blockmodels and community structure in networks.
Phys. Rev. E 83, 016107 (2011).

Recommended reading! ----- '

example matrix of parameters, B=4

summary:

1. Write down the SBM likelihood function for a fixed number of blocks B.
2. Maximize the likelihood with respect to matrix parameters.

3. Search over divisions into B blocks to find the best blocks.

There’s a subtlety here, which | haven’t written out, called degree correction. In practice, we also take into account the
exact degree sequence. This allows us to find community structure while controlling for variability in the nodes’ degrees.

GM + parameters < Data

22



The problem with parameterized models...

You have to choose thelr parameters!
How should we choose B, the number of blocks?

Hint: we can’t simply maximize the likelihood over all choices of B:

Why"? It we place each node in its own community, we can get Likelihood=1.
|Actually, this wouldn't model the data at all: it would memorize it.]

We need a way to penalize the complexity of the model. Any ideas”

23



Description length & Occam’s razor

The Description Length of a message Is:
# bits required to send the compressed message +

Occam’s razor: among all possible explanation for a phenomenon, choose the
simplest one. Therefore, choose the model with Minimum Description Length (MDL).

he stochastic block model also has a Description Length:

description length = entropy of data, given the model (fit SBM) +

Consider the original problem:
what happens to this equation when | increase the number of blocks B?

Peixoto. Entropy of stochastic blockmodel ensembles. Phys. Rev. E 85, 056122 (2012).
Peixoto. Parsimonious Module Inference in Large Networks. Phys. Rev. Lett. 110, 148701 (2013).

24



MDL criterion suggests an algorithm:

Hit the SBM with 1 block and record the Description Length.
Fit the SBM with 2 blocks and record the Description Length.

when the Description Length starts to increase, go back one step and stop.”

Bonus: what happens if | try to trick you and give you a random network with no blocks"

MDL approach will tell you: your network is a random network with one block.

*Actually, use something clever, like Golden Ratio / Fibonacci search
Press et al. Numerical Recipes: The Art of Scientific Computing, (Cambridge University Press, Cambridge, England, 2007), 3rd ed.

25



SO0 how does the search part work??

Markov-chain Monte Carlo:

Wander from one partition to another partition by proposing to take a node from
one group and move it to a new group.

If this move increases the likelihood score, then keep the move.
If this move decreases the likelihood score, then maybe keep it, depending

on how bad It Is.

Thorough detalils in the documentation for graph-tool. https.//graph-tool.skewed.de

20


https://graph-tool.skewed.de

Does it work”?

Adamic & Glance mapped the link

structure of USA political blogs in 2004.

Karrer & Newman used this network
as a testbed for community detection
using the SBM.

What does this say about the
process that may be generating (or
pruning”?) the links in this network?

Karrer & Newman PRE 2011. https://arxiv.org/abs/1008.3926
Adamic & Glance KDD 2005. https://dl.acm.org/citation.cfm?id=1134277
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https://dl.acm.org/citation.cfm?id=1134277
https://arxiv.org/abs/1008.3926

Does it work"?

In bipartite networks, we know the
major split in the data already.

Methodologically, we found that
exploiting this split improved speed and
quality of the partitions we found.

Scientifically, this opened new directions ©
to analyze (and understand) evolutionary
constraints on malaria parasites.

Code by Tzu-Chi Yen https://github.com/junipertcy/det k bisbm.
Figure http://danlarremore.com/webweb/

Genes & substrings,
malaria iImmune evasion

Larremore, Clauset, Buckee, PLoS Comp Biol, 2013.

Larremore, Clauset, Jacobs, Physical Review E, 2014.

28


https://github.com/junipertcy/det_k_bisbm
http://danlarremore.com/webweb/

Does it work"?

In bipartite networks, we know the
major split in the data already.

Methodologically, we found that
exploiting this split improved speed and
quality of the partitions we found.

Scientifically, this opened new directions
to analyze (and understand) evolutionary
constraints on malaria parasites.

genes

substrings

S . TR

Genes & substrings,
malaria iImmune evasion

Larremore, Clauset, Buckee, PLoS Comp Biol, 2013.

Larremore, Clauset, Jacobs, Physical Review E, 2014.

29



Does it work”?

e
—N

297 neurons, completely mapped.
The neurons do not fire action
potentials, and do not express
any voltage-gated ion channels.

Note the different layout...

//*/ /’. |
y ,,‘”"

///// . 7 //
C. elegans 1st multicellular genome.1998. http://science.sciencemag.org/content/282/6396/2012. //////////////////W'

Bacteriophage 1st genome: https://www.nature.com/articles/265687a0



http://science.sciencemag.org/content/282/5396/2012
https://www.nature.com/articles/265687a0

A good alternative”” cross-validation via link prediction

Select B by choosing the

model that makes the best predictions.

Perform k-fold cross validation:

1. Divide the edges

of the network Into kK groups, called folds.

2. Hide one of the folds (the "test set”)

3. Fiteach SBM to't
4. Test the abllity of -

ne remaining k-1 folds (the “training set’), varying B.
he fitted models to predict the hidden test data.

5. Switch which fold

Choose the B with the hig

s "test” and which are "training” and repeat.

hest performance on link prediction over all k folds.

31



Advanced topic 1: hierarchical communities
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Don’t minimize the description length
of the data and the model...

Model the model as well. Why"?

If we compress the model, we can
afford a bigger model, but a lower
overall cost.

Except now, the description length
includes two models. Or three”? Or?

Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014). 32



Advanced topic 1: hierarchical communities

Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014).

33



Advanced topic 2: mixed-membership

Nodes are often pulled between
communities. (Or in real social systems,
individuals belong to multiple groups.)

“Mixed membership” models allow for
that, by assigning /inks to groups, and
assigning nodes to groups based on
thelr links.

Ball, B., Karrer, B. & Newman, M. E. J. Efficient and principled method for detecting communities in networks. Phys. Rev. E 84, 036103 (2011).

34



Advanced Topic 3: multilayer networks

In single-layer networks:

nodes and edges P>. \
In multilayer networks:
nodes, edges, and layers f »

edges: different types of relationships
layers: each layer contains all edges of one type
nodes: same nodes in each layer

c c@ g c@ g6



Multilayer network: air travel

Ryanair

Lufthansa

Vueling

British airways
Aggregate

) () {

traditional: booking with airline disrupted: booking with kayak, expedia, etc



Multilayer network: community structure®

three key approaches:

1. Non-generative: modularity maximization; vary inter-layer strength.
Mucha et al Science 2010. http://science.sciencemag.org/content/328/5980/876

2. Generative: SBM for each layer, but jointly model layers whenever their

structures are sufficiently similar.
Peixoto, T. P. Phys. Rev. E 92, 042807-15 (2015).

3. Generative: SBM for each layer, and model all layers simultaneously with same

community structure, but allow relationships between groups to vary.
De Bacco Power Larremore Moore. Phys. Rev. E 95, 1981-10 (2017).

1 is preferred it nodes appear/disappear over time.
2,3 are preferred to solve the layer interdependence problem



Laye r | n 'te rd e p e n d e n Ce more layers = better performanqe

(layer structure generated by same social mech.)

Are layers structurally similar? Complementary” Neither?
“‘Learn” a SBM from m layers; try to predict links of m+1.
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12 layer social support network across 2 villages in South India.

Caterina De Bacco, Eleanor A. Power, Daniel B. Larremore, and Cristopher Moore.
"Community detection, link prediction, and layer interdependence in multilayer networks” Physical Review E 95 042317



Layer interdependence - malaria

more layers = worse performance
(layer structure generated by different biol. mech.)
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cannot predict the structure of one region in the immune-evasion genes
by using other regions; layers are unrelated!

Caterina De Bacco, Eleanor A. Power, Daniel B. Larremore, and Cristopher Moore.
"Community detection, link prediction, and layer interdependence in multilayer networks” Physical Review E 95 042317



Advanced topic 4: metadata+communities

What are metadata?

How well do metadata explain the network structure”? “BESTest”

Peel*, Larremore™, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548 .1ull

How do metadata relate to network structure? “neoSBM”

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull

Can we use metadata to guide community detection? “metadata assisted SBM”

Newman, Clauset. Nature communications 7 (2016). https://www.nature.com/ncomms/2016/160616/ncomms11863/full/ncomms11863.html

Can we find patterns in the metadata itself? Apply multilayer SBM

Peixoto. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Phys. Rev. X 4, 011047 (2014).
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Blockmodel entropy significance test

ow well do the metadata explain the network??

randomly assigned metadata metadata correlated with communities
— model gives no explanation, high H — model gives good explanation, low H

1. Divide the network G into groups according to metadata labels M.

2. Fit the maximum likelihood parameters of an a posteriori SBM and
compute the entropy H(G,M) of the corresponding ensemble.

3. Compare the entropy of this SBM ensemble to distribution of
entropies from SBMs partitioned using shuffled metadata M.

p-value = PrlH(G,{M?})) < H(G,M)]

https://piratepeel.github.io/code.html
Peel*, Larremore™, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull



http://advances.sciencemag.org/content/3/5/e1602548.full

Multiple network layers; multiple metadata attributes

Network Status Gender Office Practice Law School
. | model = SBM
Friendship < 106 0.034 <109 0.033 0.134
Cowork <103 0.094 <107 <106 0.922
Advice < 106 0.010 <109 <109 0.205

Multiple sets of metadata significantly explain multiple networks.
[Should one particular set of metadata be ground truth?]

https://piratepeel.github.io/code.html
Peel*, Larremore™, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull



http://advances.sciencemag.org/content/3/5/e1602548.full

BESTest accommodates many models of group structure

Model
Network SBM DCSBM
Malaria 1 0.566 0.066
Malaria2 | 0.064 0.126
Malaria3 | 0.536 0.415
Malaria4 | 0.588 0.570 : o
Malaria 5 | 0.382  0.097 metadata = parasite origin
Malaria6 | 0.275 0.817
Malaria7 | 0.020 0.437
Malaria8 | 0.464 0.143
Malaria9 | 0.115 0.104

A negative result: parasite origin is irrelevant to genetic substring-sharing.

Malaria parasites do not have a strong strain structure, with implications for

https://piratepeel.github.io/code.html

Peel*, Larremore*, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull
DBL, Clauset, A. & Buckee, C. O. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes. PLoS Comp Bio 9, e1003268 (2013).

diversifying selection among parasites.



http://advances.sciencemag.org/content/3/5/e1602548.full

neoSBM

Choose between the SBM partition and the metadata partition.

LheosBM = Lspm  +  f(0)
neoSBM SBM cost
log likelihood log likelihood

Log likelihood with parameterized prior:
0 is the parameter of a Bernoulli prior on whether the node is free to choose its own
community or held fixed at its metadata label.

As 0 increases, the cost of freeing a node decreases.

Varying 6 in the unit interval explores the space of partitions between M and C.

https://piratepeel.github.io/code.html
Peel*, Larremore™, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull



http://advances.sciencemag.org/content/3/5/e1602548.full

Plant two different kinds of structure in a network
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https://piratepeel.github.io/code.html
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SBM with 8 groups and
two interesting 4-group partitions:

" ||

Il. assortative

|. core-periphery

Peel*, Larremore™, Clauset. Science Advances 3(5) e1602548. (2017) http://advances.sciencemag.org/content/3/5/e1602548.1ull



http://advances.sciencemag.org/content/3/5/e1602548.full

The neoSBM identifies four interesting partitions
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The prior parameter changes the likelihood surface
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Other things to know about 1: “The Louvain Method”

[f your network is really big. (Milllons of nodes, Billions of edges)

Take ClausetNewmanMoore's approach for greedy Q maximization and find small
groups. Run the code again on those groups... And again...

Advantage: fast! big! #
Disadvantage: inherits the
assumptions of modularity.

(clustering vs modeling)

oK citations. People like it!

https://en.wikipedia.org/wiki/L ouvain_Modularity https://arxiv.org/pdf/0803.04 /6. paf
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Other things to know about 2: InfoMap

Imagine a random walker on a network.

Fluid Mechanics

Material Engineering
Computer Science
ooooooo
Operations Research | . N\ [ribology

A description of her walk canpe = e

Telecommunication

compressed if the network has regionsin -~ .. [ 77

rrrrrrrrrrrrr

which the random walker tends to stay for .. AN -

Probability & Statistics

Geosciences
Astronomy-& Astrophysics

Chemistry

Environmental Chemistry & Microbiology
1
a long time.,

X . Applied Acoustics
Business & Marketing Analytic Chemistry

Economics ~ Geography

cccccccccccccccccccccc
ooooooooo

Minimizing the “map equation” over al - AR T\ b
DOSssIble network partitions is the same as SNy L
finding the best codebook. =

Parasitology

nnnnnnnnnnnnnnnnn
Medical Imaging

hhhhhhhhhhhhh
oooooooooooooo

oooooooooooooooo
ooooooo

ooooooooooooooooooooooo

http://www.mapequation.org/apps/MapDemo.html &

http://www.mapequation.org/code.html



http://www.mapequation.org/code.html
http://www.mapequation.org/apps/MapDemo.html

Outlook for community detection

Simply put, we have amazingly powerful tools that did not exist 15 years ago.
Many are principled, statistically rigorous, and we learn more all the time. Those
that aren’t statistically rigorous are really, really fast.

There is no multiple regression for networks.
‘Controlling for C, how important is X in predicting Y*”

Tradeoffs between general and bespoke methods are still being explored.
OQutside of SBM, Modularity, Louvain, Infomap, it's a wild west.

Methodologists are keen to be challenged by new problem types.
New scientific guestions inspire new methods.
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Many uses for the same techniques. cf regression

Treat the network like a system:
Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time).
Interpolation. [dentity missing links.
Generalization. Nodes of this type are like others of the same type.

Treat the network like an artifact:

Mechanisms. How did this network arise”? VWhat rules governed its assembly”?
Explanations. Coarse-graining or compression.

Useful division. Need ranking so that we can assign experimental treatments.
Simplification. Downstream regression model needs ranks or groups.
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The idea of rankings — pervasive!

Assumptions:
1. Competitors have some intrinsic quality (or vector of gualities).
2. Interactions can (stochastically) reveal differences in qualities.
3. Competitions are pair-wise. (Lee Sedol vs. AlphaGo; Astros vs. Dodgers)

In other words: outcomes are generated by a stochastic process, which is
some function of the positions of the competitors.




Systems of dominance

\M
( -
\V‘/\{ hDCI4eyf'ghts' com VIOLENT GENTLEMEN

Home FightLog Players Teams Leagues Videos News Community Games Blog

Sam Bennett vs Ryan Johansen W Video

Feb 21, 2017 2pd 06:27
2016-2017 Regular Season

2ND 13:33 | SHOTS

[ coy 16
_NSH 12

Date / Time Away / Home Team Away / Home Player
Feb 21, 2017 Calgary Flames Sam Bennett
2pd 06:27 Nashville Predators Ryan Johansen

Your vote

You must sign in to vote.

You can sign up for free if you do not have an account already.

physical

Sam Bennett [ 1 92.9% WY com

Ryan Johansen 5.4% A

Draw a 1.8% User Name User Name Remember Me?
From 56 votes with an average rating of 5.6 Password Login

mental

financial

== Related Li

Sam Bennett
2016-2017 Regt




Systems of endorsement

MIT
Cornell Caltech

Harvard O‘ O UC Berkeley

O ‘ O
Stanford O y < O Washington

Princeton Carnegie Mellon
Yale

Assumptions:
1. Endorsers have some intrinsic quality.

2. Interactions can reveal differences in qualities.

3. Endorsements are pair-wise.

Clauset, Arbesman, Larremore. Science Advances 1, e1400005 (2015).

O Stanford

O UC Berkeley

O MIT

O Caltech

—O Harvard

O Cornell

O Carnegie Mellon

O Princeton

O Yale

O Washington



Systems of endorsement

MIT
Cornell Caltech
Harvard ’ UC Berkeley
) »
T 1 7/"’1. Ve
o 2O
~ O S - ‘/‘4‘ 7"@"\“

4/ )\'
.

.,
|
)

Caste

Stanford O/ p ‘ Washington

Princeton Carnegie Mellon Hindu Yaath
Inau Yaathavar

Pallar
Arundhathiyar
Agamudaiyaan
Aasaari
Naayakkar

RC Yaathavar
Kallar

Kulaalar

Yale

f

!l, }'t‘- |

Q)
(X

EEOEROOEROA

Latent position can e revealed by

dominance or endorsement interactions. Tenpattl

Figure: Larremore, Hébert-Dufresne, Power. Dratft. Data: Power. Nature Human Behaviour 1, 0057 (2017)



The setup: suppose we have a directed network.

lts adjacency matrix is A .

A;=A,,; meansibeatj or iwasendorsed Dby j

The problem: Rank the nodes.

Alternative view: there might be no network here. In some

cases we're just seeing a network Iin pairwise comparison data
because networks are a convenient data structure.

Alternative problem: Which items should be compared next in order to
most/lbest resolve our estimate of the ranks”? (sequential tournament design)
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Emlbeddings vs Orderings

1 2 3 4 5 0
Ordering place the nodes in order: _— = e e e =
1,2, 3 ..
Embedding assigns a position to each node; =—— = =——— — )

7; 72, 7, 20, 27, 272, -1 \ 1

Which one should | use?
> Depends on the use case.

> |3 it possible for two nodes to occupy the same rank or position” If so, an
embedding is more appropriate. Also better when meaning of 1-rank A varies.,

> Consider that you can always go from an embedding to an ordering, if you
have a rule for breaking ties.
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Win-Loss Is not satisfactory: schedule matters

Beating the grandmaster counts for more than beating a novice.

Win and loss tallies don’t take this “schedule difficulty” into account. Put differently,
win-1oss records leave information on the table.

One way to make use of this information: f’-"":'- e L
I beats j implies si > s; 00 a0 «i *

Therefore if we have a whole list of outcomes, RN P T S

200

we can try to find a total ordering that breaks N P AR

as few of these implications as possible. e N
300 - . ) .t RN ¥

Az-j — number of times that / beat J. | | | '
minimum violation ranking: sort A.




Win-Loss Is not satisfactory: schedule matters

ow do we find an ordering that minimizes the number of violations (or upsets) 7

Recipe (MCMC):.
1. Order the nodes randomly.
2. Compute the number of violations. In expectation, this should be 50% of edges.

3. Pick two nodes at random and propose to swap their positions.
4. Compute the number of violations in this scenario.

5. If #violations decreases or stays the same, keep the swap. Otherwise, reject.
6. Repeat until....?

Notes:
* The number of violations is non-increasing over time. / \
‘here may be no unigue minimum. Consider this scenario:
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Embeddings & Orderings 0: MVR & Agony

There is no guarantee of a unique minimizing ranking s.

Space of ordinal rankings has n! elements, requiring slow 1 100 - "0
search algorithms (e.g. MCMC). I A A RO
Ordinal. No ties. No interpretability of rank differences.

o °o Yo oS o L o ° °
A L ‘« H. S

NN 3?'-:’-" T o. ’ .3"‘ 8- \%.‘ ‘;.."' ¢ "

e © o py X

What it you allowed for ties and then

€% %
[ ]

...

° o.. .‘0 oo
o oo N ‘c.

1000 7, oo

?‘o‘.’

[ ]
"oo.o.: . ..00. bp... .c’.’“ ~.~ ig‘o“tr" O.o
¢ w® ': oo.o

S .

¢ ...o '000. ‘ oooo ." .oo:
o

® ‘oo
.,

°
.. ’....o.\..o

ran Minimum Violation Ranking (MVR)? N R
What would happen? o e Tl T ".3. |
MVR: uniform cost (1 per edge). Tl RUCEEER. : *;
Agony: generic cost function. | T Ny
for example, difference in ranks. BTN

- . minimum violation rankin t A.
What are other premises on which U Olallon ranking. sor

we can base a ranking model?

Gupte et al. Finding hierarchy in directed online social networks WWW (201 1) 62



Embeddings and Orderings 1:
Discrete choice models

gettyimages

GEORGE SKADDING

Louis Leon Thurstone and Thelma Thurstone tip678767



Embeddings and Orderings 1: Discrete choice models

ANY PAIN? HOW WOULD YOU RATE THE | THE WORST PAN ONE. ... \HAT THE HELL
\ PAIN, FROMONE To TEN, | I CAN IMAGINE? IS WRONG umi
MY ARM WHERE TEN 15 THE WORST HIS IMAGINATION?
REALLY PAIN YOU CAN IMAGINE? 6 NOT A
HURTS. Noemmma
)

A e SR N
s E 1

Instead of rating everything from 1 to 10, try paired comparisons.
Do you preferjorj ?

Why"? Consider: My 3 is not your 3. What is 1 and what is 107
https://xkcd.com/883/



Embeddings and Orderings 1: Discrete choice models

Thurstone: items have quality distributions. When a person judges whether A is better
than B they draw from A's distribution and from B’s distribution and see which is higher.

Probability Densities for A and B .
Y Thurstone modeled these as Gaussians.

P(A> B)=PA —-B > 0)

Density

Difference of Gaussians is Gaussian.

y C
e A I_l A—B
(C—> C—>)
ABI B—A

Hp Ha
Quality Scale

Where @~ !(x) is the inverse CDF of standard normal, a.k.a. the probit.

Powerful idea: lots of pairwise comparisons = estimates of all the qualities! An embedding!
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Key: pairwise comparisons = directed network. i preferredtoj = i —

Finding the qualities of items from pairwise comparisons = Finding embedding of nodes.
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Embeddings and Orderings 1: Discrete choice models

Bradley-Terry & Luce: items have quality distributions. When a person judges whether
A Is better than B they draw from A's and from B’s distribution and see which is higher.

Probability Densities for A and B

BTL
A

> P(A > B) =

% TTA -+ g

()
Or usually:

0 - e,uA/S 1

P(A > B) = -

Mg u

A Uals upls —(py—pp)ls
Quality Scale eHa’S + eHs 1 + e~ (Ha—Hsp

Same idea; different distribution. (fogit instead of probit; Gumbel instead of Gaussian)

Powerful idea: lots of pairwise comparisons = estimates of all the qualities! An embedding!

67



BTL avoids non-transitivities (aka rock-paper-scissors)
Introducing: non-transitive dice!

* 3 (or more) dice {A,B,C}

* faces chosen so that they have the property:
* A>B more than half the time.
* B>C more than half the time.
* C>A more than half the time (?!)

https://en.wikipedia.org/wiki/Nontransitive dice

A great gift for your favorite nerd’s desk!
Go to the makerspace and laserbeam your own!
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Bradley-Terry-Luce

These methods embed items or players in a 1D space.
* Provably avoids non-transitive properties
e (Great when lots of data per interaction.

Pairwise ranking is really nice for ordering large sets of
oreferences too, and this model specifically models the
orobabllity that the preference will be for i over .

lterative algorithms exist. Needs a little regularization so
the winningest winners don’t fly off to infinity.

Vi
Yi T 7V

P(i — j) =
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Embeddings and Orderings 1: Discrete choice models

Introductory tutorial:
http://mayagupta.org/publications/PairedComparisonTutorial TsukidaGupta.pdf

Discrete choice today:
https://web.stanford.edu/~jugander/papers/nipsi6-pcmce-slides. pdf
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Embeddings & Orderings 2: SpringRan
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Each directed edge = directed spring

4 -

>
O)
el
O
-
)




How much energy is this system of springs”?
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Relax and let the springs decide the ranks

H(s) = % > Aij(si— s —1)7

1,7=1
SpringRank Hamiltonian = energy of the system, given the node positions s.
Because the springs are linear, the potential is quadratic.
The SR Hamiltonian is convex in s.
VH(s) =0

The solution is unique...up to an additive constant. (\Why?)
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Derivatives work out nicely

0OH
0= 882 — EJ:AZJ(SZ — Sj — 1) — Aji(Sj — S; — 1)

Rewrite as a linear algebra problem.
[Dout 1+ Din o (A 4+ AT)] g* — [Dout L Din} 1
We know a priori that the matrix on the left is singular: translational invariance of H(s).
[if s is a solution, then s + k is a solution for any constant k; eigenvalue O, eigenvector 1]

Notice: the matrix on the left is the graph Laplacian of the undirected network.

Unigueness: Set s71=0, min(s)=0, or mean(s)=0. Or use a pseudoinverse. Or regularize.
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It works!

Real networks tend to be sparse...
our linear algebra problem is sparse...
we can use sparse iterative solvers...

millions of edges in seconds.

" Near-linear-time (in |edges|) solutions.

Note that node positions can be clumpy,
since this is an embedding.

Even better: it's a linear-Laplacian system.

0.5

computer science
faculty hiring network

/6



rural ~._parakeets CS hiring
L social | 1 l
b support
-
"’ 0.6
0
."/ . 0.4 |

risk: stopping at “ours Is faster” + pretty p|ctures.

"’ 7 / j( \‘
-1 V | ' 0
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Cross validation: train on 80%, predict 20%

In a linear hierarchy the key quantity to predict is edge direction, given eage existence.
If i and j were to face off, who would win®

'll give you undirected(A), and you predict directed(A).

Setup: learn s from 80% of A. Then predict edge directions for remaining 20% of A.

SpringRank predicts edge direction based on the relative direction probabilities:

e PHij 1
Pz(/ﬁ) — e—ﬁHij 1 e—ﬁHjZ’ — 1 um 6—26(871_53')

/8



Cross validation vs BTL: SR makes better predictions

0.8

a

o
~

Accuracy:
=1— 50 Z | Aj —

Goal: maximize the number of
correctly predicted edge directions.

(Aij + Aji) Py

SpringRank prediction accuracy o
O
O

o
o
®

Alakapurum Parakeet G1 Business
| - 10 s 09 |
’,'-;;-'. P4 .~ o
._gé -/ %
.sl’ 'y ‘s.j::'.:_o
‘ g‘; 0.8 ! S
% | . 0.85 | S
e SRO0.99 e SRO0.71 e SRO0.67
1 + BTLO0.01 06! /] BTL0.29] | a BTL 0.33
0.7 0.8 0.6 0.8 1 0.85 0.9
NCAA Women 08 NCAA Men
0.8 '
| 0.75
e 07 : co
- e SRO0.98 || 0.7 | e SRO0.94 | e SRO0.76
] ¢ BTLO.02| | 7| ] BTL 0.06 a BTL 0.24
0.86 0.9 0.7 0.75 0.8 0.7 0.8

BTL prediction accuracy o,

50 independent trials of 5-fold cross validation (250 folag®)



Cross validation vs SyncRank: SR makes better predictions

o NCAA Women NCAA Men
© 085 | | 1 o085F | | |
13 R} . a
One-bit” Accuracy: - 2
o @® 0.8
: . =5 © 08
igher ranked player always wins. £ B
cr C ~ O 0.75 1
* No probabilistic prediction. §8 o0
 Bad for gambling. > 2 0.7 |
o S_*g 0.7 //  SpringRank 0.85 | | // e SpringRank 0.87
Goal: maximize the number of P T SyncRank 0.15] | 0@5( SyncRank 0.13 | |
&)

correctly predicted edge directions. 07 075 08 085 065 07 075 08 085

SyncRank fraction correctly predicted games oy,

50 independent trials of 5-fold cross validation (250 fold)



Why/when would a model of springs make better predictions
than a model of the choices themselves?©)
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Embeddings and Orderings 3: PageRank

PageRank defines scalar rank recursively:

Important pages are those that are linked to by important pages.
e Great at finding the top 3 but limited predictions available using the PageRank scores.

The PageRank Citation Ranking:
Bringing Order to the Web

January 29, 1998

Abstract

The importance of a Web page is an inherently subjective matter, which depends on the
readers interests, knowledge and attitudes. But there is still much that can be said objectively
about the relative importance of Web pages. This paper describes PageRank, a method for
rating Web pages objectively and mechanically, effectively measuring the human interest and
attention devoted to them.

We compare PageRank to an idealized random Web surfer. We show how to efficiently
compute PageRank for large numbers of pages. And, we show how to apply PageRank to search
and to user navigation.

L — T ——————

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
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Embeddings and Orderings 3: PageRank

We imagine a web surfer who choose a starting webpage at random.

From that webpage, she looks at the links on the page, and either
(@) clicks on a random link or

(o) stops surfing; when she returns, she starts at a new random page.

What'’s the probability that she’s at a particular page” That's PageRank.

A 1 —d 1 —d
J1 — l — T
define a transition matrix write the equation matrix-vector form

Alternative: stationary distribution of random walk on the network + weak all-to-all links

Jeremy Kun: http://www.infinitelooper.com/?v=K3p TO0gTaDec&p=n
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Embeddings and Orderings 4: Ball & Newman

Generative model.
Generate the patterns that you want to identify. 0

@ | [ ®
Create N nodes.
Assign each node an integer rank r, from 1 to N.

0.1

o
N
T T [ T
———
1 1 | 1
[
e ——
I

IRL, not all friendships are reciprocated @ T 1
SO let’s generate undirected AND directed edges: | | | K

P(i o)) = alr—n) ___JL_ J Tﬁ%ﬂm

-1

A gaussian centered at O azz)

P(i —j) = Plr;—r)
Fourier cosine series, keeping five terms & squaring to enforce

nonnegativity, plus an additional Gaussian peak at the origin.
Ball, Newman. Network Science 1, 16-30 (20183

Probability of friendship
|




Embeddings and Orderings 4: Ball & Newman ,

Inference
GM + parameters < Data

a

p

ranks

Inferred parameters of people’s attachment preferences & ranks.
e |dentified the need to learn from reciprocated friendships.
* Found that in AddHealth data, teens link to others of nearby

social status.

o

Ball, Newman. Network Science 1, 16-30 (20189



Embeddings and Orderings 5: Niche Models

Niche Models embed species in a latent
space based on feeding preferences:
most species feed from narrow range
in a 1-dim. space (~body size).
e Great for food webs. Inference
models v slow for all but small
networks.

Want more”? Jen Dunne, Cris Moore

Figure 1 Diagram of the niche model. Each of S species (for example, §= 6, each shown
as an inverted triangle) is assigned a ‘niche value’ parameter (n;) drawn uniformly from
the interval [0,1]. Species i consumes all species falling in a range (r;) that is placed by
uniformly drawing the centre of the range (¢;) from [r/2, n;]. This permits looping and
cannibalism by allowing up to half of r; to include values = n,. The size of r;is assigned by
using a beta function to randomly draw values from [0, 1] whose expected value is 26 and
then multiplying that value by n; [expected E(n) = 0.5] to obtain the desired €. A beta
distribution with o« = 1 has the form fxI1, B) = B(1—X""", 0 < x < 1, 0 otherwise, and
EX) = 1/(1+8). In this case, x= 1—(1—))""#is a random variable from the beta distribution
if yis a uniform random variable and 3 is chosen to obtain the desired expected value. We
chose this form because of its simplicity and ease of calculation. The fundamental
generality of species /is measured by r. The number of species falling within r; measures
realized generality. Occasionally, model-generated webs contain completely discon-
nected species or trophically identical species. Such species are eliminated and replaced
until the web is free of such species. The species with the smallest n,has r,= 0 so that
every web has at least one basal species.

Williams & Martinez. Nature 404.6774 (2000).






Many uses for the same techniques. cf regression

Treat the network like a system:
Extrapolation. Make predictions for as-yet unseen nodes (in “space” or time).
Interpolation. [dentity missing links.
Generalization. Nodes of this type are like others of the same type.

Treat the network like an artifact:

Mechanisms. How did this network arise”? VWhat rules governed its assembly”?
Explanations. Coarse-graining or compression.

Useful division. Need groups so that we can assign treatments in an A/B test.
Simplification. Downstream regression model needs ranks or groups.
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PDF of slides avallable
http.//danlarremore.com/CommunityDetection_and_Ranking_Larremore_2019.pdf

Goals for this talk:
1. Why do we look for large-scale structure? &

2. How do we find communities and hierarchies? &)
3. Where can we read more details? &
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Thank you

@danlarremore
daniel.larremore@colorado.edu



Aside: the birth of null models & chance sociograms

Who shall survive? Moreno, 1936

Moreno wondered If there were
structural explanations for why
certain young girls were running
away from the school, and thought
that sociographic analysis might
hold an answer.

SOC|08ramI

Chance Tcs‘t*']

26 persons, 3 chorces
Choice
No iec:rnca‘m-'.

chance sociograms

e — R

SIAM Review: Configuring random graph models with fixed degree sequences. http://arxiv.org/abs/1608.00607
The Book: http://www.asgpp.org/docs/wss/Book%20VI/index.html

Johan Ugander’s Post: https://jugander.wordpress.com/2014/08/07/computational-perspectives-on-large-scale-social-networks-a-brief-history/ 91
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http://arxiv.org/abs/1608.00607

Aside;:

Here Is one of my favorite papers of all time:

JMLR: Workshop and Conference Proceedings 27:65-79, 2012 Workshop on Unsupervised and Transfer Learning

Clustering: Science or Art?

Ulrike von Luxburg ULRIKE.LUXBURGQTUEBINGEN.MPG.DE
Mazx Planck Institute for Intelligent Systems, Tibingen, Germany

Robert C. Williamson BOB.WILLIAMSON@QANU.EDU.AU
Australian National University and NICTA, Canberra ACT 0200, Australia

Isabelle Guyon ISABELLEQCLOPINET.COM
ClopiNet, 955 Creston Road, Berkeley, CA 94708, USA

http://proceedings.mir.press/v2 7 /luxburg12a/luxburgl2a.pdf
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