The Block Point Process Model for Continuous-Time Event-Based Dynamic Networks

Ruthwik R. Junuthula, Maysam Haghdan, Kevin S. Xu, and Vijay K. Devabhaktuni
Statistical Inference for Network Models
June 20, 2017
Continuous-Time Event-Based Dynamic Networks

- Relational event data with **fine-grained** timestamps
 - Facebook wall posts (Viswanath et al., 2009)

- Represent events as triplets \((i, j, t)\)

- Goal: build statistical model for these relations over time

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1595</td>
<td>1021</td>
<td>1100626783</td>
</tr>
<tr>
<td>4581</td>
<td>5626</td>
<td>1100627183</td>
</tr>
<tr>
<td>3806</td>
<td>991</td>
<td>1100640075</td>
</tr>
<tr>
<td>521</td>
<td>533</td>
<td>1100714520</td>
</tr>
<tr>
<td>521</td>
<td>3368</td>
<td>1100716404</td>
</tr>
<tr>
<td>8734</td>
<td>527</td>
<td>1100724840</td>
</tr>
<tr>
<td>1017</td>
<td>1015</td>
<td>1100828851</td>
</tr>
<tr>
<td>17377</td>
<td>1021</td>
<td>1100832283</td>
</tr>
<tr>
<td>2926</td>
<td>726</td>
<td>1100838067</td>
</tr>
</tbody>
</table>
Models for Static Networks

- If we discard timestamps, events become edges \((i, j)\) in a static network.
- Represent network by \(N \times N\) adjacency matrix \(A\).

Stochastic block model (SBM):

- Latent classes:
 - 4
 - 35
 - 97

- Edge probabilities between classes:
 - 0.1 0.9 0.1
 - 0.1 0.1 0.9
 - 0.9 0.1 0.1
Models for Discrete-Time Dynamic Networks

- If we aggregate events over time windows, we get a discrete-time snapshot-based network representation.

- Discrete-time SBMs (Yang et al., 2011; Xu and Hero, 2014; Xu, 2015; Matias and Miele, 2016)

- Trade-offs in choosing snapshot length:
 - Too long: loses temporal resolution
 - Too short: increases number of snapshots and causes model to forget too quickly due to short-term memory
The Block Point Process Model (BPPM)

• Our approach: Model event triplets \((i, j, t)\) directly using SBM-like generative structure
 – Divide nodes into \(K\) classes forming \(p = K^2\) blocks (assuming directed events)
 – Generate times of events in each block using a point process model
 – Randomly associate event with a pair of nodes \((i, j)\) in the block (thinning)
 – We use an exponential Hawkes process model in practice
Our Contributions

• We prove that static networks resulting from the BPPM follow an SBM as $N \to \infty$
 – We provide an upper bound on the deviation from independence for finite N

• We develop a principled inference procedure for the BPPM using local search initialized by spectral clustering
 – Scales to 5,000+ nodes and 100,000+ events

• We demonstrate that the BPPM is superior to discrete-time network models regardless of snapshot length
Comparison with Discrete-Time SBM

- Prediction task: Attempt to predict time to next event (Facebook wall post) in each block
 - 3,586 nodes and 137,170 events in data set

![Graph showing MSE vs. Length of time snapshot for Discrete-time SBM and Block Hawkes model]
Relationship to SBM

- Identical distribution of adjacency matrix entries within block satisfied by BPPM generative procedure
- But independence of entries is not satisfied!
 - Denote deviation from independence by
 \[
 \delta_0 = \Pr(a_{ij} = 0 | a_{i'j'} = 0) - \Pr(a_{ij} = 0) \\
 \delta_1 = \Pr(a_{ij} = 0 | a_{i'j'} = 1) - \Pr(a_{ij} = 0)
 \]

Theorem (Asymptotic Independence Theorem). Consider an adjacency matrix \(A\) constructed from the BPPM over some time interval \([t_1, t_2]\). Then, for any two entries \(a_{ij}\) and \(a_{i'j'}\) both in block \(b\), the deviation from independence given by \(\delta_0, \delta_1\) defined in (1) is bounded in the following manner:

\[
|\delta_0|, |\delta_1| \leq \min \{1, \mu_b/n_b \}
\]

where \(\mu_b\) denotes the expected number of events in block \(b\) in \([t_1, t_2]\), and \(n_b\) denotes the size of block \(b\). In the limit as the block size \(n_b \to \infty\), \(\delta_0, \delta_1 \to 0\) provided \(\mu_b\) is fixed or growing at a slower rate than \(n_b\). Thus \(a_{ij}\) and \(a_{i'j'}\) are asymptotically independent in the block size \(n_b\).