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Statistical properties of avalanches in networks
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We characterize the distributions of size and duration of avalanches propagating in complex networks. By
an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network
node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is
connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations,
including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics
of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an
appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous
studies of avalanches in networks have not considered the effect of network structure on the distribution of size
and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide
expressions for the distributions of size and duration of avalanches starting at particular nodes in the network.
These findings might find application in the analysis of branching processes in networks, such as cascading
power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures
of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust
to complex underlying network topologies.
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I. INTRODUCTION

In this paper we study the statistics of avalanches propagat-
ing in complex networks. The study of avalanches of activity
in complex networks is relevant to diverse fields, including
epidemiology [1,2], genealogy [3], and neuroscience [4–13].
The simplest case of an avalanche corresponds to a branching
process [14,15], first studied by Watson and Galton [3],
which can be considered as an avalanche propagating in
a tree network. Various generalizations to the case where
avalanches propagate in a more general network have been
considered recently [13,16–18] and related problems such as
the distribution of cluster size in percolation models [19,20]
and self-organized criticality in the sandpile model [21] have
been studied. In contrast to these previous studies, we develop
a theory of avalanche size and duration on complex networks
that, instead of using some form of mean-field analysis,
explicitly includes the network topology. This approach allows
for an analysis of avalanches starting from arbitrary nodes in
the network and the effect of nontrivial network structure on
the distribution of avalanche size and duration.

Our formalism in this paper is general, describing dynamics
with applications to a wide variety of systems. Our results
are correspondingly general, but they may be of particular
interest to those investigating recent experimental observations
of avalanches of neuronal bursting in the mammalian cortex.
When a neuron fires it stimulates other neurons that may
subsequently fire. When this linked activity occurs in a
cascade, it is called a neuronal avalanche (experimentally,
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neuronal avalanches are observed propagating in functional
networks where each node represents a group of neurons).
Recent experiments have studied neuronal avalanches of
activity in the brains of awake monkeys [4], anesthetized
rats [22], slices of rat cortex [5,11], and humans [23]. These
studies found that when the tissue is allowed to grow and
operate undisturbed in homeostasis [6], both the size and
temporal duration of neuronal avalanches are distributed
according to a power law. In contrast, the application of
drugs that selectively decrease the activity of inhibitory or
excitatory neurons results in avalanches with different statistics
[5]. Based on these observations, it has been argued and
demonstrated experimentally that many neuronal networks
operate in a critical regime that leads to power-law avalanche
distributions [5,11,22,23], maximized dynamic range [5,7–9],
and maximized information capacity [10–12]. Therefore, it
is of great interest to characterize this critical state and to
understand how experimental signatures of criticality may
change upon modification of the underlying network (e.g.,
changes induced by the drugs used in experiments).

We find that the statistical properties of avalanches are
determined by spectral properties of the matrix whose entries
Anm are the probabilities that the avalanche propagates from
node n to node m. In particular, the eigenvalue λ of maximum
magnitude (by the Perron-Frobenius theorem λ is real and
positive if Anm > 0) and its associated eigenvector play a
prominent role in determining the functional form and the
parameters for the statistical distribution of avalanche size and
duration. While many of our findings have analogous results
in classical Galton-Watson branching processes [14,15], in-
cluding the largest eigenvalue criterion for criticality found in
so-called multitype branching processes [15], we emphasize
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that our analysis allows us to identify how changes in network
structure affect the parameters of the statistical distributions
of avalanche size and duration. Moreover, our theory allows
us to obtain the statistics of avalanches starting at particular
network nodes.

This paper is organized as follows. In Sec. II we describe
our model for avalanche propagation in networks. In Secs. III
and IV we analyze the statistics of avalanche duration and
size. In Sec. V we validate our analysis through numerical
experiments. Section VI presents further discussion and
conclusions.

II. FORMULATION

To model the propagation of avalanches in a network,
we consider a network of N nodes labeled m = 1,2, . . . ,N .
Each node m has a state x̃m = 0 or 1. We refer to x̃m = 0
as the resting state and to x̃m = 1 as the excited state. At
discrete times t = 0,1, . . . , the states of the nodes x̃t

m are
simultaneously updated as follows. (i) If node m is in the
resting state x̃t

m = 0, it can be excited by an excited node n,
x̃t

n = 1, with probability 0 � Anm < 1, so that x̃t+1
m = 1. (ii)

The nodes that are excited x̃t
n = 1 will deterministically return

to the resting state in the next time step x̃t+1
n = 0. We therefore

describe a network of N nodes with an N × N weighted
network adjacency matrix A = {Anm}, where Anm > 0 may
be thought of as the strength of connection from node n to
node m and Anm = 0 implies that node n does not connect to
node m. We will assume that given any two nodes n and m, the
probability that an excitation originating at node n is able to
excite node m (through potentially many intermediate nodes)
is not zero. This is equivalent to saying the network is fully
connected and therefore the matrix A is irreducible.

Starting from a single excited node k (x̃0
n = 1 if m = n

and x̃0
m = 0 if m �= n), we let the system evolve according to

the dynamics above and observe the cascade of activity until
there are no more excited nodes. This motivates the following
definitions, which are illustrated in Fig. 1. (1) An avalanche
is the sequence of excitations produced by a single excited
node. (2) The duration d of an avalanche is defined as the
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FIG. 1. An example avalanche is shown, where circles represent
nodes, arrows represent links, and numbers inside nodes correspond
to the time step at which each node is activated. Starting from a
single excited node, labeled 1, the avalanche spreads to two other
nodes, labeled 2, and so on. Note that the presence of a link does
not guarantee the transmission of excitation. The example avalanche
above lasts for five time steps and excited a total of six nodes in
addition to the initial node, so d = 5 and x = 7.

total number of time steps spanned by the avalanche: If the
avalanche starts with x̃0

n = 1, then

dn = min
t�0

{
x̃t

k = 0 ∀ k
}
. (1)

An avalanche that continues indefinitely is said to have infinite
duration. (3) The size x of an avalanche starting at x̃0

n = 1
is defined as the total number of nodes excited during an
avalanche, allowing for nodes to be excited multiple times:

xn =
dn−1∑
t=0

N∑
k=1

x̃t
k. (2)

Note that it is possible for an avalanche to have size larger than
the total size of the network (e.g., if dn = ∞, then xn = ∞).
Our goal in this paper is to determine the probability
distributions of these variables in terms of the matrix A.

III. DISTRIBUTION OF AVALANCHE DURATION

In order to analyze the statistics of avalanche duration we
define cn(t) as the probability that an avalanche starting at node
n has duration less than or equal to t ,

cn(t) = P(dn � t). (3)

The quantity cn(t) is the cumulative distribution function of
the random variable dn. In what follows we will restrict our
attention to a class of networks that we call locally treelike.
By locally treelike in this paper we shall mean that for any
given t not too large and a pair of nodes j and k, if there
exists a directed path of length t from j to k, then it is rarely
the case that there will also exist a second such path [24].
Many networks found in applications are of this type and it
has been found that the locally treelike approximation works
very well in describing various dynamical processes while still
capturing the effects of network heterogeneity [8,9,24–26].
For these networks we can approximately treat the avalanches
propagating to different neighbors of node n as independent
and write the recursion relation

cn(t + 1) =
N∏

m=1

[(1 − Anm) + Anmcm(t)] (4)

together with cn(0) = 0, which follows from the definition (3).
The right-hand side of Eq. (4) is the probability that nodes are
either not excited by node n or if they are that they generate
avalanches of duration at most t : 1 − Anm is the probability
that an excitation does not pass from node n to node m, whereas
Anmcm(t) is the probability that an excitation does pass from
node n to node m and the resulting avalanche has duration at
most t . Note that Eq. (4) can treat any node n as the starting
node for an avalanche. As discussed above, Eq. (4) assumes
that the descendent branches of the avalanche are independent.
It is however possible that an avalanche may branch in such
a way that two branches interact at a later time. Nevertheless,
for the networks we studied we found that while these events
do occur for large avalanches, they do not significantly affect
our predictions. We show numerical results confirming this in
Sec. V.

We are interested in the distribution of long avalanche
duration, i.e., in the asymptotic form of cn(t) for t → ∞.
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By definition (see also Appendix A), cn(t) is a bounded,
increasing function of t and therefore it must converge to
a value limt→∞ cn(t) = bn � 1, which can be interpreted as
the probability that an avalanche starting at node n has finite
duration. Our analysis will be based on whether or not this
limit is strictly less than one or equal to one. As shown
in Appendix A, this is determined by the Perron-Frobenius
eigenvalue of A, λ: If λ � 1, then limt→∞ cn(t) = 1. The case
λ < 1 will be referred to as the subcritical case and the case
λ = 1 will be referred to as the critical case. In contrast, if
λ > 1, then limt→∞ cn(t) = bn < 1, which implies that there
is a nonzero probability that an avalanche has infinite duration.
This case will be referred to as the supercritical case. The
asymptotic form of cn(t) will be analyzed separately for these
three cases below.

A. Subcritical networks (λ < 1)

In the subcritical case bn = 1 is the only fixed point of the
system (4) (see Appendix A). To analyze the asymptotic form
of cn(t), we assume it is close to the fixed point and define
the small quantity fn(t) = 1 − cn(t). Linearizing Eq. (4) we
obtain

fn(t + 1) =
N∑

m=1

Anmfm(t). (5)

Assuming exponential decay (or growth) of perturbations
fn(t) = λtun we obtain

λun =
N∑

m=1

Anmum. (6)

Thus λ is an eigenvalue of A and u = [u1,u2, . . . ,uN ] is
its right eigenvector. We identify λ as the Perron-Frobenius
eigenvalue since, having the largest magnitude among all the
eigenvalues, λtun will be the dominant term as t → ∞ when
compared with the other modes. We note that for finite t this
approximation is good as long as there is a large enough
separation between λ and the rest of the spectrum of A.
This issue is discussed in Ref. [27], where it was found that
this separation is typically large in networks without strong
community structure. Henceforth, we will assume that λ is
well separated from the rest of the spectrum of A. Therefore,
cn(t) approaches 1 exponentially as

cn(t) ≈ 1 − λtun, (7)

where u is the right eigenvector of A corresponding to λ;
un > 0 by the Perron-Frobenius theorem [28]. The fixed
point bn = 1 is linearly stable when λ < 1. The probability
density function (PDF) of avalanche duration is given by
pn(t) = P (dn = t) = cn(t) − cn(t − 1), so

pn(t) ∼ (λ−1 − 1)unλ
t , (8)

which decays exponentially to zero with decay rate ln(1/λ).
In summary, we can draw two predictions from the analysis

above for subcritical networks: (i) the PDF of avalanche
duration decays exponentially toward zero as λt and (ii) the
probability that an avalanche started at node n lasts t steps is
proportional to the nth entry of the right eigenvector of A, un.
These predictions are tested in Sec. V.

B. Supercritical networks (λ > 1)

A linear stability analysis of the fixed point bn = 1 in
the supercritical case shows that this fixed point is linearly
unstable. This implies (see Appendix A) that there exists
another fixed point bn to which cn(t) converges from below,
limt→∞ cn(t) = bn < 1. Thus there is a nonzero probability
that an avalanche will have infinite duration. Our analysis be-
low characterizes the distribution of finite avalanche duration
in supercritical networks. We first note that the fixed point bn

satisfies

bn =
N∏

m=1

[(1 − Anm) + Anmbm]. (9)

Again, we introduce the quantity fn(t) = bn − cn(t) and
consider the limit when t is large and fn is small. We substitute
this into Eq. (4) and rewrite it as

bn − fn(t + 1) = bn

N∏
m=1

[
1 − Anmfm(t)

(1 − Anm) + Anmbm

]
. (10)

By defining a new matrix D with entries

Dnm = Anmbn

(1 − Anm) + Anmbm

(11)

and linearizing Eq. (10) we find

fn(t + 1) ≈
N∑

m=1

Dnmfm(t). (12)

As in the subcritical case, we conclude that fn(t) ≈ λt
Dwn,

where w is the right Perron-Frobenius eigenvector of the
matrix D and λD its Perron-Frobenius eigenvalue. As argued
in Appendix A, λD < 1 when λ > 1, thus ensuring exponential
convergence. Therefore, we have

cn(t) ≈ bn − wnλ
t
D. (13)

As in the subcritical case, the PDF of avalanche duration is
given by

pn(t) ∼ (
λ−1

D − 1
)
wnλ

t
D, (14)

which decays exponentially to zero with decay rate ln(1/λD).
In summary, for supercritical networks (i) the PDF of

avalanche duration decays exponentially toward zero as λt
D

and (ii) the probability that an avalanche started at node n lasts
t steps is proportional to the nth entry of the right eigenvector
of D, wn. These predictions are tested in Sec. V. We note
that these predictions simplify to those drawn from Eq. (8)
if the network is subcritical, in which case bn = 1, Eq. (11)
simplifies to Dnm = Anm, and therefore λD = λ and w = u.

C. Critical networks (λ = 1)

The analyses above show that if λ = 1, the fixed point bn =
1 is marginally stable. This fixed point must be an attracting
fixed point since cn(t) is nondecreasing and bn = 1 is the only
fixed point of Eq. (4) as shown in Appendix A. To determine
the asymptotic form of cn(t) for large t we let cn(t) = 1 −
fn(t). We assume that Eq. (4) has a solution whose asymptotic
functional form in t (to be determined) can be extended to a
differentiable function of a continuous time variable t . Since
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the convergence of fn(t) to 0 is slower than exponential, we
look for a solution fn(t), which is slowly varying in t when
fn(t) is small, and approximate

fn(t + 1) ≈ fn(t) + f ′
n(t). (15)

The slowly varying assumption implies that dfn(t)/dt ≡
f ′

n(t) 
 fn(t) as fn → 0, which we note excludes an expo-
nential solution. Substituting Eq. (15) into Eq. (4), we get

1 − fn(t) − f ′
n(t) ≈

N∏
m=1

[1 − Anmfm(t)]. (16)

Assuming fn(t) 
 1 and expanding to second order, we get
after simplifying and dropping the time notation for clarity

fn + f ′
n ≈

∑
m

Anmfm − 1

2

∑
m

∑
k �=m

AnmAknfmfk. (17)

The leading-order terms are fn on the left-hand side and∑
m Anmfm on the right-hand side, so for these to balance

as f → 0 requires

fn =
∑
m

Anmfm. (18)

Therefore, in this limit the vector f(t) = [f1(t),f2(t),
. . . ,fN (t)]T has to be proportional to the normalized right
eigenvector u of A with eigenvalue λ = 1. Thus a slowly
varying solution exists only for a critical network. Since u
is independent of time, the constant of proportionality must be
time dependent, fn(t) = K(t)un. Now, for finite f , we expect
the solution to deviate by a small error from this limit solution,
so we set

fn(t) = K(t)un/〈v〉 + εn(t), (19)

where we assume εn 
 fn(t), ε′
n 
 f ′

n(t), and the term 〈u〉 =∑N
n=1 un/N is included to make K(t) independent of the

normalization of u. Inserting this in Eq. (17), neglecting terms
of order ε′, ε2, and f ε, and using

∑
m

∑
k �=m AnmAknumuk ≈

u2
n, we obtain

εn + K ′(t)un/〈v〉 =
N∑

m=1

Anmεm − 1

2
K2(t)u2

n/〈u〉2. (20)

To eliminate the unknown error term ε, we multiply by vn,
where v is the left eigenvector of A satisfying vT A = vT , and
sum over n. The error terms cancel and we obtain an ordinary
differential equation (ODE)

K ′(t) = −1

2

〈vu2〉
〈vu〉〈u〉K

2(t), (21)

where 〈xy〉 ≡ 1
N

∑
n xnyn. Solving this ODE yields

K(t) ≈ 1

β + 1
2

〈vu2〉
〈vu〉〈u〉 t

, (22)

where β is an integration constant. In terms of the original
variables, we obtain

cn(t) ≈ 1 − un

β + 1
2

〈vu2〉
〈vu〉〈u〉 t

. (23)

The PDF in the continuous time approximation is given by
pn(t) = c′

n(t),

pn(t) ∝ un(
β + 1

2
〈vu2〉

〈vu〉〈u〉 t
)2 . (24)

From Eq. (24) we make the prediction that as t → ∞, pn(t) ∼
unt

−2. This prediction is tested in Sec. V.

IV. DISTRIBUTION OF AVALANCHE SIZE

In order to analyze the distribution of avalanche size we
define the random variable xn as the size of an avalanche
starting at node n. Let znm be a random variable that is 1 if
node n excites node m and 0 otherwise, so that znm = 1 with
probability Anm and 0 with probability 1 − Anm. Thus

xn = 1 +
N∑

m=1

znmxm. (25)

When λ > 1 there is a nonzero probability that an avalanche
has infinite duration and therefore infinite size, as demon-
strated in Sec. III B and Appendix A. Therefore, we will
restrict our attention to only the distribution of avalanches
that are finite. To study this distribution we define the moment
generating function

φn(s) ≡ E[e−sxn |xn < ∞]. (26)

We now use Eq. (25) to derive a relation between the moment
generating functions corresponding to different nodes. First,
we rewrite the condition xn < ∞ for node n in terms of
events applicable to its neighbors. An avalanche starting at
node n is finite if and only if for every node m either (i) the
excitation does not pass from node n to node m or (ii) the
excitation passes from node n to node m but the subsequent
avalanche starting from node m is finite. Therefore, we rewrite
the condition xn < ∞ as the requirement that for any m,
(znm,xm) ∈ Znm ∪ Wnm, where we have defined the disjoint
sets of events Znm = {znm = 0} and Wnm = {xm < ∞,znm =
1}. Assuming the independence of the random variables xm

(consistent with the locally treelike assumption used in the
preceding section), we can rewrite φn(s) as

φn(s) = e−s

N∏
m=1

E[e−sznmxm |Znm ∪ Wnm], (27)

where the expectation E[·] is taken over realizations of the
random pairs (znm,xm). Denoting P (W ) as the probability of
an event set W , we relate the expected value in the product in
Eq. (27) to the probabilities of the events Wnm and Znm:

E[e−sznmxm |Znm ∪ Wnm]P (Znm ∪ Wnm)

= E[e−sznmxm |Znm]P (Znm) + E[e−sznmxm |Wnm]P (Wnm).

(28)

Using the relations that follow from the definitions above,

P (Znm) = 1 − Anm,

P (Wnm) = Anmbm,

P (Znm ∪ Wnm) = (1 − Anm) + Anmbm,
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E[e−sznmxm |Wnm] = φm(s),

E[e−sznmxm |Znm] = 1,

substitution into Eq. (28) gives

E[e−sznmxm |Znm ∪ Wnm] = (1 − Anm) + bmAnmφm(s)

(1 − Anm) + bmAnm

.

(29)

Inserting this into Eq. (27), we obtain one of our main results,

φn(s) = e−s

N∏
m=1

(1 − Anm) + bmAnmφm(s)

(1 − Anm) + bmAnm

. (30)

Defining gn(s) = φn(s) − 1 and the matrix H with entries

Hnm = bmAnm

(1 − Anm) + bmAnm

, (31)

we can rewrite Eq. (30) as

1 + gn(s) = e−s

N∏
m=1

[1 + Hnmgm(s)]. (32)

Defining the N × N matrix, B = diag(b1,b2, . . . ,bN ), we have
from Eqs. (11) and (31) that HB−1 = B−1D. Thus the matrix
H is related to the matrix D by a similarity transformation
and therefore has the same spectrum. Therefore, we will
denote the Perron-Frobenius eigenvalue of H by λD . Note
that λD = λ when λ � 1 since in that case bn = 1 and
H = A. The asymptotic form for the distribution of the size
of avalanches starting at node n, pn(x), can be obtained from
the asymptotic form of gn(s) as s → 0. Therefore, we study
Eq. (32) by assuming that gn(s) is small. In order to obtain
an analytic expression for the distribution of size we assume
in addition that the network is close to critical, |λD − 1| 
 1.
Taking logarithms in Eq. (32) and using the approximation
ln(1 + g) ≈ g − g2/2, we obtain

gn(s) − 1

2
gn(s)2 = −s +

N∑
m=1

Hnmgm(s) − 1

2

N∑
m=1

H 2
nmg2

m(s).

(33)

As s → 0 and gn → 0, the leading-order terms are
gn(s) = −s + ∑

m Hnmgm(s) or (HT − I )g = s1, where g =
[g1,g2, . . . ,gN ]T and 1 = [1,1, . . . ,1]T . When |λD − 1| 
 1
and λD is well separated from the rest of the spectrum of H ,
as we are assuming, g = s(HT − I )−11 ∼ u, where u is the
right Perron-Frobenius eigenvalue of H (more precisely, we
are assuming such a separation for A, but since H = A when
λ = 1 and we are assuming |λD − 1| 
 1, by continuity the
assumption is valid for H as well). Since u is independent
of s, the solution up to first order is approximately gn(s) =
g(s)un/〈u〉, where the term 〈u〉 = 1

N

∑N
n=1 un is included to

make g(s) independent of the normalization of u. For small s

and including the nonlinear terms, we expect the solution of
Eq. (33) to be close to this solution, so we set

gn(s) = g(s)〈u〉−1un + εn(s), (34)

where εn is a small unknown error term. Substituting Eq. (34)
into Eq. (33), using Hu = λDu, and neglecting terms of order

εg we get

g(s)〈u〉−1un+εn(s)− 1

2
g(s)2〈u〉−2u2

n

= −s+λg(s)〈u〉−1un +
N∑

m=1

Hnmεm(s)

− g(s)2〈u〉−2 1

2

N∑
m=1

H 2
nmu2

m. (35)

To eliminate the unknown error term εn we multiply by the left
eigenvector entry vn of H and sum over n. We use HT v = λDv
and neglect (λD − 1)εn to get

g(s)〈u〉−1〈vu〉 − 1

2
g(s)2〈u〉−2〈vu2〉

= −s〈v〉 + λDg(s)〈u〉−1〈vu〉
− g(s)2〈u〉−2 1

2N

∑
n

∑
m

vnH
2
nmu2

m, (36)

where 〈xy〉 ≡ 1
N

∑
n xnyn. Equation (36) is a quadratic equa-

tion for g(s), ag2 + bg + c = 0, with

a =
∑

n

∑
m vn

(
1 − H 2

nm

)
u2

m

2N〈vu〉〈u〉 , (37)

b = λD − 1, (38)

c = −s
〈v〉〈u〉
〈vu〉 . (39)

Solving for g(s) and substituting back into gn(s) = φn(s) − 1
we find, choosing the root that guarantees gn < 0,

φn(s) = 1 +
−(λD − 1) −

√
(λD − 1)2 + 4sa

〈v〉〈u〉
〈vu〉

2a

un

〈u〉 .
(40)

The moment generating function φn, first defined in Eq. (26),
can be interpreted as the Laplace transform of the distribution
of size. Taking the inverse Laplace transform of the form
of φn(s) found in Eq. (40) we obtain that for large x, the
distribution of size pn(x) is approximately given by

pn(x) ∝ unx
−3/2 exp(−x/x∗), (41)

where the characteristic size x∗ is given by

x∗ = 4a
〈u〉〈v〉
〈uv〉

1

(λD − 1)2
. (42)

The distribution of size is asymptotically an exponential times
a power law with exponent −3/2. Such a functional form
describes the distribution of the size of connected clusters near
the percolation threshold in some network percolation models
[19,20]. In the critical case, when λ = λD = 1, x∗ diverges
and we recover a power-law distribution with exponent −3/2,
which is the well-known exponent for critical branching
processes [14,29]. It is interesting to note that this exponent,
in our model, does not depend on the structure of the network,
contrasting related percolation models where all nodes with the
same degree are considered statistically equivalent [20]. Also
note that the quantity a in Eq. (42) depends implicitly on λD .
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V. NUMERICAL EXPERIMENTS

In this section we test the theoretical predictions of
the preceding sections by directly simulating the process
described in Sec. II on computer-generated networks. We first
describe the processes used to construct networks and simulate
avalanches.

Networks were constructed in two steps. First, binary
networks (with adjacency matrix entries Ânm ∈ {0,1}) were
constructed via an implementation of the configuration model
[30], using N = 105 nodes, with nodal degrees drawn from a
power-law distribution with exponent 3.5, i.e., the probability
that a node has degree k is proportional to k−3.5. Second, each
nonzero entry Ânm was given a weight, drawn from a uniform
distribution U[0,1]. We then calculated the Perron-Frobenius
eigenvalue of this weighted matrix, λ̂, and multiplied the
matrix by λ/λ̂, resulting in a matrix A with the desired
eigenvalue λ. We simulated avalanches for networks with λ

between 0.5 and 1.5, sampling more finely for values close
to 1.

Each simulated avalanche was created by first exciting a
single network node, chosen uniformly at random, and then
calculating the size and duration of the resulting avalanche
as defined in Eqs. (1) and (2). If the resulting avalanche
lasted for more than 106 time steps, we considered it as
having infinite duration and infinite size. In all cases the initial
excitation was included so that the minimum size was x = 1
and the minimum duration was d = 1. For each subcritical
(λ < 1) and supercritical (λ > 1) case, 106 avalanches were
simulated, and for λ = 1, we simulated 2 × 106 avalanches to
better sample the very broad distribution of avalanche size at
criticality.

A brief summary of the predictions of Secs. III and IV
is as follows. The probability of an avalanche of duration d

will decay as λd for subcritical networks (λ < 1), as d−2 for
critical networks (λ = 1), and as λd

D for supercritical networks
(λ > 1), where λD is the Perron-Frobenius eigenvalue of the
matrix D, Eq. (31). When |λD − 1| 
 1, the probability of
a finite avalanche of size x will decay as x−3/2 exp(−x/x∗),
where x∗ is a network-specific constant, given in Eq. (42).

In Figs. 2 and 3 we compare histograms of avalanche
duration and size obtained from direct numerical simulations
for λ = 0.9 (left), 1.0 (center), and 1.1 (right) with the
theoretical predictions described in the preceding paragraph
(dashed lines). Note that, since our predictions allow for an un-
specified proportionality constant, the vertical position of the
dashed lines was chosen arbitrarily. In general, we find good
agreement between the theoretical predictions of avalanche
duration and size distributions with the histograms observed
in the simulations. While the dashed lines in Figs. 2 and 3 are
appealing to the eye, more quantitative measures of agreement
between theory and experiment are shown in Figs. 4 and 5.

To numerically test the agreement between theory and
experiment for the distribution of avalanche duration, in Fig. 4
we compare the best fit λ̂ of the data to p(t) ∝ λ̂t , calculated
through a nonlinear least-squares regression on the simulated
PDF of avalanche duration, to our theoretical predictions in
Eqs. (8) and (14) (solid line). The agreement is excellent,
though not exact, over the entire range of λ values simulated.
Maximum likelihood estimates of λ̂ (not shown) are nearly
identical to the least-squares estimates shown in Fig. 4.

As a partial test of our theory for the distribution of
avalanche size we assume that the form of the distribution
is x−3/2e−x/x∗

and estimate x∗ from the data, which we then
compare with our theoretical prediction in Eq. (42). Noting
that as λ → 1, x∗ will diverge, we estimated 1/x∗ via a
nonlinear least-squares using Brent’s minimization on the
cumulative histogram of the avalanche size data. Since our
theory describes only the asymptotic form of the distribution,
this estimate was performed only on the largest 10% of
measured data. [Similar results were obtained using the largest
5%, 1%, and 0.1% of data (not shown), but when using
more than the largest 10%, the minimizing x∗ value diverged,
suggesting that we fit the power-law portion of data at the
expense of the exponential tail.] Figure 5 shows the theoretical
prediction (solid line) and the result of the numerical fit to the
data (solid circles; the dashed lines are to aid the eye). As
shown, agreement is quite good close to λD = 1 (see the inset
of Fig. 5), but less accurate for very subcritical or supercritical
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FIG. 2. (Color online) Histograms of avalanche duration shown above for networks of N = 105 nodes with a power-law degree distribution
and exponent γ = 3.5 with Perron-Frobenius eigenvalues of λ = 0.9 (left), λ = 1.0 (center), and λ = 1.1 (right). Symbols show the number
of avalanches having duration d from a single simulation of 106, 2 × 106, and 106 avalanches, respectively, from left to right. Dashed lines
provide a reference for the theoretical predictions described in Eqs. (7), (23), and (13). Note that the vertical position of the dashed lines was
chosen arbitrarily. Due to predictions of exponential decay for the subcritical and supercritical cases, the left and right plots are plotted on a
log-linear scale, while the center plot is plotted on a log-log scale to show the power-law decay. Infinite duration avalanches in the supercritical
case (right) are not displayed in the figure.
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FIG. 3. (Color online) Histograms of avalanche size shown above for networks of N = 105 nodes with a power-law degree distribution and
exponent γ = 3.5 with Perron-Frobenius eigenvalues of λ = 0.9 (left), λ = 1.0 (center), and λ = 1.1 (right) on a log-log scale. Symbols show
the number of avalanches having size x from a single simulation of 106, 2 × 106, and 106 avalanches, respectively, from left to right. Dashed
lines provide a reference for the theoretical prediction x−3/2 exp(−x/x∗) described in Eqs. (41) and (42). Note that the vertical position of the
dashed lines was chosen arbitrarily. Infinite size avalanches in the supercritical case (right) are not represented in the data set. The agreement
between theoretical prediction and measurement is excellent despite finite sample size noise.

networks. The latter is reasonable since the assumption that
|λD − 1| is a small quantity was used in the derivation of
Eq. (42). As an alternative, a maximum likelihood estimation
of the parameters α and x∗ in p(x) ∝ x−αe−x/x∗ on avalanches
of all sizes (not shown) gives values of α in the range 1.49–1.68
and values of x∗ similar to those in Fig. 5.

Although Figs. 4 and 5 demonstrate agreement between
theory and measurement for supercritical networks, that
analysis was restricted to finite avalanches. To complement
this result we compare the predicted fraction of infinite
avalanches with the measured fraction for various values of
λD . The quantity bn in Eq. (9) is the fraction of avalanches
originating at node n that will have finite duration and size.
In Fig. 6 we show the fraction of avalanches that decay in
finite time, averaged over nodes, comparing theory (solid line)
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FIG. 4. (Color online) Comparison of predicted duration decay
rates [Eqs. (7) and (13)] (solid line) and numerical simulations (solid
circles) plotted against λ, the largest eigenvalue of the network
adjacency matrix. The agreement is excellent for both the subcritical
and supercritical numerical simulations. The distribution of avalanche
durations decays as λt and λt

D for λ � 1 and λ > 1, respectively, as
indicated by arrows.

with experiment (solid circles). The theoretical fraction of
avalanches was calculated by numerically solving Eq. (9)
to find bn,n = 1 . . . ,N , and then plotting

∑N
n=1 bn/N as a

function of λ. The numerical fraction of finite avalanches was
calculated by simulating 106 avalanches, each one starting
at a random node (out of N = 105 nodes). If an avalanche
lasted more than 106 steps, we counted it as an infinite
avalanche. Then, an estimate of bn was calculated as the
fraction of finite avalanches starting at node n. The symbols
in Fig. 6 show

∑N
n=1 bn/N as a function of λ. The agreement

is excellent over the entire range of λ values tested. Beyond
aggregate statistics, we also test a more subtle prediction of
Eq. (7). In Sec. III we concluded that fn(t) = 1 − cn(t), the
probability that an avalanche started at node n lasts more than
t steps, scales for large t as fn(t) ∝ λtun, where u is the
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FIG. 5. (Color online) Testing the prediction that avalanche size
x is distributed as x−3/2 exp (−x/x∗), we compare the theoretical
prediction of x∗ (solid line) with x∗ estimated via regression on
the largest 10% of avalanches from numerical simulations (solid
circles, dashed line). The inset shows identical data on a magnified
domain around λ = 1. The agreement is excellent for λ near 1 and
decreasingly accurate for much larger or smaller λ.

066131-7



LARREMORE, CARPENTER, OTT, AND RESTREPO PHYSICAL REVIEW E 85, 066131 (2012)

0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

0.6

0.7

0.8

0.9

1

Perron−Frobenius eigenvalue  λ

fin
ite

 fr
ac

tio
n 

of
 a

va
la

nc
he

s

 

 

Predicted
Measured

FIG. 6. (Color online) When the Perron-Frobenius eigenvalue λ

is larger than one, there is a nonzero probability of an avalanche
starting at node n having infinite duration, as predicted by Eq. (9).
Here we average the finite fraction of avalanches originating from
node n over all nodes, showing excellent agreement between the
fraction predicted by averaging Eq. (9) (solid line) and the fraction
measured from simulation (solid circles).

right Perron-Frobenius eigenvector of A. Other research in the
network adjacency matrix literature has noted that the vector
of nodal out-degrees (in-degrees) is a good approximation for
the right (left) dominant eigenvector of A in the absence of
degree correlations [31]. In this light, our prediction above
is understandable: When there are no degree correlations in
the network, a node with a larger right eigenvector entry (and
thus larger out-degree) will tend to produce longer avalanches.
Therefore, in order to fully test our prediction, we created
networks with assortative mixing by degree [32], a type of
degree correlation that we measure using the coefficient ρ [31],

ρ =
〈
kin
n kout

m

〉
e〈

kin
n

〉
e

〈
kout
m

〉
e

, (43)

where 〈·〉e denotes an average over all edges and k are weighted
nodal degrees defined as kin

n = ∑
m Anm and kout

n = ∑
m Amn.

In the absence of degree correlations between connected nodes
〈kin

n kout
m 〉e = 〈kin

n 〉e〈kout
m 〉e and ρ = 1. In assortative networks

there exists a positive correlation (ρ > 1) between the in-
degree at node n and the out-degree at node m at the ends
of a directed link from n to m. When the correlation is
negative (ρ < 1), the network is called disassortative. Thus
we created Erdős-Rényi random networks with N = 104

nodes and rewired each network via a link-swapping process
(as described in Ref. [31]) until we had very assortative
and disassortative networks (ρ = 1.2 and 0.8, respectively).
Equation (7) implies that in such networks the tails of the
cumulative distribution function of avalanches originating at
node n will be proportional to the corresponding entry of
the right eigenvector, which may differ significantly from the
nodal out-degree. For the a subcritical network (λ = 0.95)
with assortativity coefficient ρ = 0.8 we plot fn(30) and its
corresponding entry in the right dominant eigenvector un

for each node n, in Fig. 7, showing that proportionality is
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FIG. 7. Testing the node-specific prediction of Eq. (7), avalanches
were simulated on a subcritical (λ = 0.95) and disassortative (ρ =
0.8) Erdős Rényi random network with N = 104 nodes. In the main
plot, the fraction of avalanches originating at node n that last longer
than 30 time steps, fn(30), is plotted against the corresponding entry
in the right Perron-Frobenius eigenvector un. In the inset, the same
values fn(30) are plotted against the corresponding out-degree kout

n .
The eigenvector entry un does a significantly better job than out-
degree kout

n of predicting the duration of avalanches originating at node
n in disassortative networks (shown) and for assortative networks (not
shown).

excellent. In the inset of the same figure we plot fn(30) against
the corresponding out-degree kout

n for each node n, showing
that proportionality to out-degree does not hold. Assortative
networks produce the same effect, but are not shown here.

VI. DISCUSSION

We have presented an analysis of the asymptotic distri-
butions of the duration and size of avalanches in complex
networks. This work is of interest in various applications, most
notably neuroscience [4–13] and the analysis of power-grid
failure cascades [33]. While some of our results, such as the
functional forms for the distributions, are analogous to those
found in classical Galton-Watson branching processes [14] or
in mean-field models [20], we emphasize the distinguishing
aspects of our results. (i) We generalize the criterion for
criticality to λ = 1, which depends on the topology of the
network in ways that previous results do not capture. For
example, in critical branching processes [29] the condition
for criticality is 〈d〉 = 1. (ii) The parameters of the asymptotic
distributions in the various regimes are affected by the network
topology and our results allow us to predict how various
factors such as network degree distributions or degree-degree
correlations affect these parameters [e.g., the parameter x∗ in
Eq. (42) or λD in Eq. (13)]. (iii) In contrast to previous studies,
our results allow us to predict the statistics of avalanches
generated at a particular node. This might be of critical
importance in certain applications where the adjacency matrix
is known or can be inferred (such as the power grid or the
Autonomous System network of the Internet) since one can
then allocate resources to prevent avalanches, if so desired, that
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start at the nodes that tend to generate the largest avalanches.
As shown in Fig. 7, the naive prediction that the nodes with
the largest out-degree generate the largest avalanches is not
necessarily true when the networks have nontrivial structure,
such as degree correlations.

In developing our theory we made some assumptions that
we now discuss. First, we assumed that the network was locally
treelike. This allowed us to treat avalanches propagating to
the neighbors of a given node as independent of each other.
While this is a good approximation for the networks we used,
it is certainly not true in general. In particular, avalanches
propagating separately from a given node might excite the
same node as they grow. The result is that the number of nodes
that the avalanches excite in the simulation may be less than
what the theory would predict. In running our simulations
we addressed this issue in two ways. First, we kept track
of the number of times two branches of the same avalanche
simultaneously excited the same node n, finding it to be an
increasing function of avalanche size and Perron-Frobenius
eigenvalue, yet still negligible when compared to the total
number of excitations. In addition, each time such an event
occurred, we separately generated an avalanche starting from
the doubly excited node n and corrected both the size and
duration of the original avalanche by incorporating these
additional avalanches. We found that doing this had no
appreciable effect on the measured distributions and so all
figures shown in this paper are produced from simulation
data without the additional compensating avalanches included.
This and the fact that the numerical simulations are described
well by the theory suggest that the interaction of avalanches
propagating to different neighbor nodes can be safely neglected
in the networks studied. The performance of our theory in
networks that are not locally treelike, such as networks with a
high degree of clustering, is left for future research. Another
approximation we used is that the Perron-Frobenius eigenvalue
λ is well separated from the rest of the spectrum. This is a good
approximation in networks without well-defined communities,
but can break down in networks with strong community
structure [27].

Finally, we note that our results show that the experimental
signatures of criticality in neural systems (characterized by
a power-law distribution of avalanche size and duration with
exponents −3/2 and −2, respectively [4,5,11,12]) are robust
to complex underlying network topologies.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Woodrow
L. Shew. D.B.L. and M.Y.C. were supported by National Sci-
ence Foundation (NSF) Mentoring through Critical Transition
Points in the Mathematical Sciences Grant No. DMS-0602284.
J.G.R. was supported by NSF Grant No. DMS-0908221. E.O.
was supported by Office of Naval Research Multidisciplinary
University Research Initiative Grant No. N00014-07-1-0734.

APPENDIX A: PROBABILITY OF FINITE
AVALANCHE DURATION

In this appendix we establish that the probability of finite
avalanches, under our assumptions, is always one when λ � 1

(critical and subcritical networks) and becomes less than one
when λ > 1 (supercritical networks). These probabilities bn =
limt→∞ cn(t) satisfy the equation

bn =
N∏

m=1

[(1 − Anm) + Anmbm]. (A1)

First, we show that if λ � 1, where λ is the Perron-Frobenius
eigenvalue of A, then the only solution to the equation above
is bn = 1. Letting bn = 1 − fn, we have for all n

1 − fn =
N∏

m=1

[1 − Anmfm]. (A2)

Using the Weierstrass product inequality [34]

N∑
m=1

Anmfm � 1 −
N∏

m=1

[1 − Anmfm] = fn, (A3)

with equality only if (i) Anmfm = 0 for all m or (ii) Anmfm = 0
for all m �= k and Ankfk = 1 for some k [34]. If v is the
left Perron-Frobenius eigenvector of A, this implies, since
vT A = λvT , that

vT Af = λvT f � vT f. (A4)

If there is a nonzero fn, then vT f > 0 since the Perron-
Frobenius eigenvector has positive entries for irreducible A.
Therefore, if λ < 1 we must have fn = 0 for all n. If λ = 1,
Eq. (A4) implies equality in Eq. (A3), which implies either
(i) Anmfm = 0 for all m and thus fn = 0 by Eq. (A3), or (ii)
Anmfm = 0 for all m �= k and Ankfk = 1 for some k, which is
impossible since we assumed that the entries of A are strictly
less than one and fk is a probability. Therefore, we must have
fn = 0 if λ = 1, a valid argument for any n. Together with the
previous argument above, we conclude that bn = 1 for all n if
λ � 1.

Now we show that if λ > 1, then limt→∞ cn(t) = bn < 1.
To show this we view Eq. (4) as a dynamical system and note
that the analysis of Sec. III A, applied to the case λ > 1, shows
that the fixed point bn = 1 is linearly unstable. If we show that
cn(t) is nondecreasing with t , then the limit bn must be less
than one. By induction we will prove that cn(t + 1) � cn(t) for
all n. First, we have cn(0) = 0 and cn(1) = ∏

m(1 − Anm) �
0, so the statement is valid for t = 0. Then assume cm(t) �
cm(t − 1) for all m and consider cn(t + 1)/cn(t), noting that
cn(t) > 0:

cn(t + 1)

cn(t)
=

N∏
m=1

(1 − Anm) + Anmcm(t)

(1 − Anm) + Anmcm(t − 1)

=
N∏

m=1

[
1 + Anm[cm(t) − cm(t − 1)]

(1 − Anm) + Anmcm(t − 1)

]
� 1,

(A5)

which proves the desired statement. Note that, although from
the definition (3) it follows that cn(t) are nondecreasing, this
proof is necessary since Eq. (4) is an approximation.
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APPENDIX B: λ > 1 ⇒ λD < 1

In this appendix we argue that the Perron-Frobenius
eigenvalue of the similar matrices H and D is less than one
when the Perron-Frobenius eigenvalue of A is greater than one:
λ > 1 ⇒ λD < 1. Recall that the matrix D was defined as

Dnm = bnAnm

(1 − Anm) + bmAnm

, (B1)

where bn, the probability that an avalanche starting at node n

is finite, satisfies

bn =
N∏

m=1

[(1 − Anm) + Anmbm]. (B2)

Now suppose that A is such that λ > 1 and introduce a
parameter α � 1 by defining bn(α) as the bn corresponding to
the matrix αA, which satisfies

bn(α) =
N∏

m=1

[(1 − αAnm) + αAnmbm(α)]. (B3)

Now calculate the derivative of bn(α) with respect to α,

dbn(α)

dα
= bn(α)

N∑
m=1

−Anm + Anmbm(α) + αAnm
dbm(α)

dα

(1 − αAnm) + αAnmbm(α)
.

(B4)

Letting μn = dbn

dα

∣∣
α=1 and evaluating the expression above at

α = 1, we get

μn = bn

N∑
m=1

−Anm + Anmbm + Anmμm

(1 − Anm) + Anmbm

(B5)

=
N∑

m=1

Dnm(bm − 1) +
N∑

m=1

Dnmμm. (B6)

In matrix form

(DT − I )μ = DT (1 − b), (B7)

where 1 = [1,1, . . . ,1]T , b = [b1,b2, . . . ,bN ]T , and μ =
[μ1,μ2, . . . ,μN ]T . Now we left multiply the previous equation
by vT , where v is the left Perron-Frobenius eigenvector of D,
satisfying vT DT = λDvT , to get

(λD − 1)vT μ = λvT (1 − b). (B8)

If λ > 1, Appendix A shows that the entries of 1 − b are all
positive. Since the Perron-Frobenius eigenvector v has positive
entries as well (since we are assuming A is irreducible), the
right-hand side of Eq. (B8) is positive. Now we argue that
the vector μ has nonpositive entries: As α increases, the
probability of an excitation passing between any pair of nodes
increases and thus the probability of having a finite avalanche
cannot increase, i.e., dbn/dα � 0. Therefore, the term vT μ on
the left-hand side must be nonpositive and since the right-hand
side is nonzero, it must be negative. Thus the term λD − 1 must
be negative, that is, λD < 1.
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